首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 294 毫秒
1.
为研究高韧性混凝土组合桥面铺装层间应力简化计算方法,采用ANSYS有限元分析,探讨钢-STC-SMA结构厚度、环境温度、桥面纵坡等对层间应力的影响规律,建立轻型组合桥面铺装层间应力估算模型,提出层间最大剪应力、最大法向拉应力简化计算公式. 研究结果表明: SMA厚度、STC厚度、环境温度、桥面纵坡等对层间应力有不同程度的影响;在最不利荷载组合下,不计桥面纵坡时,层间最大剪应力变化范围为0.38~0.55 MPa(常温)、0.35~0.55 MPa(高温);层间最大法向拉应力变化范围为0.18~0.23 MPa;层间应力随着桥面纵坡的增加而线性增加,纵坡从0%增加到8%,层间最大剪应力升幅为9.4%(常温)、12.0%(高温),层间最大拉应力升幅为12.0%(常温)、12.5%(高温);通过纵坡坡度修正,建立高韧性混凝土组合桥面铺装层间应力通用计算公式,并与实桥有限元计算结果对比,误差在9%以内,说明本文提出的计算方法可用于估算不同纵坡下高韧性混凝土组合桥面铺装层间应力.  相似文献   

2.
目的研究考虑铺装层间接触的桥面铺装及空心板梁在双轴移动荷载下的受力状态,以解决混凝土桥梁在桥面铺装设计时对铺装层之间的关系状态考虑不全面的问题.方法采用ABAQUS有限元软件建立含有沥青铺装层、粘结层、混凝土调平层、空心板及铰缝的数值模型,利用子程序模拟行车移动载荷,设置库仑接触摩擦建立层间接触,考虑不同荷位、层间摩擦系数对空心板梁及桥面铺装的影响.结果铺装层间最大水平接触力出现在梁端区域;铰缝与空心板的挠度相差10%,应力在轮载附近处变化较大;沥青铺装与粘结层间接触摩擦应力为0.209 3 MPa,大于混凝土铺装与粘结层间接触摩擦应力0.156 MPa;连续模型与接触模型的应力最大差值达4.5倍.结论不同结构层间界面薄弱,易发生剪切破坏;为防止板与铰缝间发生剪切破坏,可加强轮载附近处板与铰缝的连接;采用不同措施处理各层之间的粘结,可使经济效益最大化;将铺装层视为连续体考虑不周,层间接触假定更符合实际情况.  相似文献   

3.
为解决混凝土桥桥面铺装结构设计时对调平层与沥青铺装层层间真实接触状态考虑不足的问题,采用理论推导和室内试验相结合的方法,应用层间接触系数来评价不同层间处治措施下的层间接触状态,同时采用ANSYS软件对不同接触条件下的力学响应进行分析.结果表明,植石措施下的层间接触系数值最大,为0.607,这与其表面构造深度大有关;部分连续层间接触状态下沥青铺装结构的受力状态明显较完全连续接触条件恶化,以拉毛措施下的沥青铺装层剪应力为例,XY向、YZ向剪应力最大值分别为0.412 MPa和0.421 MPa,较完全连续条件下的0.195 MPa和0.222 MPa分别增加了111%和91%,说明以完全连续层间接触条件进行铺装结构设计是不合理的;四种混凝土表面处治措施下,各铺装层所受最大应力变化不大,但与完全连续状态相比,沥青铺装层的受力状况明显恶化,说明在铺筑实体工程时要尽可能增强调平层与沥青铺装层的层间接触状态.  相似文献   

4.
为了研究寒冷地区桥面铺装结构在交通荷载和温度应力耦合作用下复杂的层间受力状态,探究层间受力与各因素的响应关系,定量计算不同工况对层间力学响应的影响权重,最终得到基于实际工况下桥面铺装层层间工作状态,达到指导桥面铺装层间的设计、施工及检测目的。以北方寒冷地区的典型桥面铺装结构建立力学分析模型,引入针对沥青混凝土桥面铺装力学分析的有限元软件BISAR3.0程序,计算分析桥面铺装层层间剪应力分布特征。选取桥面铺装层在实际工作中层间剪应力影响因素中的桥面铺装层厚度、模量、桥梁纵坡、桥梁圆曲线半径、气温、超载6个主要实际工况,以最不利荷载位置为计算点位,分析了不同工况下铺装层层间力学行为。采用主客观赋权法相结合的层次-变异系数法综合评价不同工况条件对桥面铺装层层间剪应力的影响程度,引入桥面层间组合工况评价指数I,建立基于实际工作环境下桥面铺装层层间组合工况分级标准,评价其层间工作状态。研究结果表明:桥面铺装层和桥面板层间承受很大应力,桥面铺装层层间最不利荷载位置位于力学计算模型(1.0δ,1.5δ,0.11m)处(δ为轮胎当量半径);6种实际工况对层间影响程度差异明显,温度对层间剪应力影响所占比例最大,约为36.56%,铺装层模量的影响最小,仅为5.53%;组合工况分级共分3个等级,将评价指数I在0~50划分为1级,代表层间组合工况较差,层间剪应力代表值为0.26 MPa;3级时评价指数I为80~100,代表层间组合工况良好。  相似文献   

5.
研究钢桥面浇注式沥青混凝土与环氧沥青混凝土(GA+EA)复合铺装结构在荷载和温度耦合下的高温性能及力学特性。分析GA层的高温流变参数,采用多尺度与子模型有限元技术建立分析最不利温度下复合铺装层结构的压应力、剪应力分布状态,并预估连续变温条件下复合结构的车辙深度及蠕变应变随时间变化情况。研究结果表明:EA层扩散了荷载中心GA层压应力,但其底受剪应力较大。双轮中央处GA层由于荷载叠加作用处于不利状态,其层底压应力达0.85 MPa。最不利连续变温条件下,EA层变形量较小,GA层占铺装结构永久变形90%以上,但总体车辙深度仅为0.32 mm。铺装结构永久变形主要产生于夏季10:00-16:00高温时段。GA+EA结构较好地利用了各自材料的优点,具有良好的高温抗永久变形性能。  相似文献   

6.
桥面混凝土裂缝处防水层抗拉分析   总被引:1,自引:0,他引:1  
为充分了解桥面防水层的层间拉应力的变化规律,研究桥面混凝土裂缝处防水层的抗拉性能,利用有限元法对混凝土桥面铺装结构建模,分析了在行车荷载作用下,桥面各铺装层参数对桥面防水层层间法向拉应力的影响规律,并针对桥面水泥混凝土调平层裂缝处的防水层,建立了防水层张力计算模型.计算结果表明:沥青混凝土面层与水泥混凝土调平层的模或量和厚度、防水层厚度等参数的变化对层间法向拉应力影响很小;防水层模量是影响层间法向拉应力的主要因素,当防水层模量为10~50MPa时,对层间法向拉应力的影响最大,防水层模量为50~300MPa时影响较大,防水层模量为300~1500MPa时影响基本稳定.  相似文献   

7.
在钢桥面板与沥青铺装层之间设置轻质混凝土层,组成了一种新型钢桥面复合铺装体系。为研究这种新型铺装体系的力学特性,制备了大比例模型试件,实测了不同车位下钢桥面及铺装结构的力学响应。结果表明:钢桥面板最大横向拉应力为90MPa,而设置加劲肋后最大拉应力降至为43MPa,即设置加劲肋有利于改善钢桥面板的受力。浇筑轻质混凝土铺装层后,钢桥面板顶板和加劲肋底板的应力峰值、位移都降低,最大应力降幅达48%,最大位移降幅达18%,而且钢桥面板中的应力分布也更加均匀。作为铺装结构,轻质混凝土铺装层也与桥面板共同参与结构受力,使得桥面铺装体系的结构刚度得到提高。  相似文献   

8.
钢桥面铺装是一项世界性难题,特别是一些特殊桥梁,对桥面铺装提出了更高的要求.为此分析了大纵坡、小半径钢桥面铺装的施工特点和使用要求,提出了有针对性的树脂沥青组合体系(ERS)钢桥面铺装解决方案.ERS钢桥面铺装主要由环氧黏结碎石层(EBCL)防水抗滑黏结层、树脂沥青混凝土(RA05)整体化层和沥青玛蹄脂碎石(SMA)表面功能层组成,各层功能明确.室内试验结果表明,ERS钢桥面铺装具有较高的强度、良好的变形能力和施工和易性.该方案在杭州湾大桥海中平台匝道桥成功应用,解决了大纵坡、小半径钢桥面铺装的技术难题,具有较好的推广应用前景.  相似文献   

9.
针对桥面铺装混凝土调平层和沥青铺装层层间接触状态复杂的问题,运用ANSYS有限元分析软件,建立了更符合实际的后轴双轮组轮胎模型,以目前我国常用的空心板梁桥为研究对象,分析了摩擦、完全黏结、绑定和完全粗糙等多种接触状态下铺装结构的应力响应.计算结果表明:车辆荷载并不是均布荷载,其压力峰值随胎压和轴重的变化而变化;混凝土调平层与沥青铺装层间的接触状态对铺装结构受力影响显著;4种接触状态中,黏结接触状态下的铺装结构受力最优,当层间黏结不足时,层间接触更接近假设的"绑定"接触状态.  相似文献   

10.
混凝土桥面复合式铺装层受力分析和设计   总被引:2,自引:0,他引:2  
选取典型的T梁和箱梁桥型,将桥梁体、水泥混凝土铺装层、防水层、沥青混凝土铺装层视作一个整体,研究了复合式桥面铺装在承受汽超-20偏载作用下的结构响应.采用有限元方法进行三维空间实体建模,分析了铺装层受力最不利位置、铺装层拉应力、层间剪应力和层间法向拉应力.结果表明:桥梁体、水泥混凝土铺装层、防水层和沥青混凝土铺装层相互作用,在桥梁结构特殊部位产生铺装层最大拉应力,在轮载作用域产生最大层间应力;铺装层厚度对荷载应力大小有重要影响.提出了复合式铺装的设计指标,建议沥青混凝土铺装层和水泥混凝土铺装层厚度的设计采用复合式结构.  相似文献   

11.
环氧沥青混凝土性能研究   总被引:26,自引:0,他引:26  
通过对环氧沥青混凝土各方面力学性能的试验研究发现,环氧沥青混凝土具有优良的力学性能而且在低温条件下仍具有很好的变形能力,其强度是普通沥青混凝土或其他桥面铺装用的沥青混合料(SMA、浇注式沥青混凝土)的7-8倍,其温度变形系数接近钢板,因此,环氧沥青混凝土作为钢桥面铺装材料较之其他种类材料具有很大的优越性。  相似文献   

12.
本文结合实体工程,针对混凝土梁式桥沥青混凝土桥面铺装层的受力特点,利用ABAQUS软件建立模型,并通过对不同位置铺装层应力的分析,确定铺装层的最不利荷载位置,分析此处铺装层体系的拉应力和剪应力,确定控制铺装层破坏的力学指标,为桥面铺装设计提供力学理论依据.  相似文献   

13.
李亚东 《科技信息》2013,(8):407-407
在桥面铺装中采用的环氧沥青混凝土由于具有强度高、刚度大、变形强、高温抗塑性好、低温抗裂性好和变形追从性好等优点,在我国应用非常广泛。在桥面环氧沥青混凝土施工过程中,施工技术和条件的好坏直接影响着桥面的使用年限,本文就结合长沙市福元路湘江大桥具体工程,详细地分析环氧沥青混凝土的施工技术及控制要点,以期为以后进行的大规模桥面环氧沥青混凝土铺装施工提供一定的建议和指导。  相似文献   

14.
为研究移动荷载作用下三跨钢-混组合连续梁桥面铺装层响应,建立了一种三跨钢-混组合连续梁模型,桥面铺装层采用沥青混合料黏弹属性,移动荷载采用DLOAD与UTRACLOAD子程序实现.结果表明,上面层、下面层、水泥混凝土层及钢板层的最大垂向挠度值比纵梁大17%.由于纵梁与横梁支撑,纵梁的最大垂向挠度比非纵梁小6.6%,横梁最大垂向挠度比非横梁小3.1%.剪力钉与混凝土全接触时的竖向挠度最大,黏结与接触共同作用时的竖向挠度次之,全黏结时的竖向挠度最小.桥面铺装层承受垂向压应力,上、下面层承受横向压应力,钢板层承受横向拉应力,上面层与水泥混凝土层承受纵向压应力,下面层既承受纵向压应力又承受纵向拉应力,钢板层承受纵向拉应力.  相似文献   

15.
为探究铺装层动力响应,采用多体动力学、超弹性理论建立车辆、橡胶轮胎以及铺装层-简支桥有限元模型。通过显式求解法计算并与相关试验对比,验证计算假定和计算方法的合理性。结果表明:所建模型具有一定适用性,可用于铺装层动力分析;非线性接触及车辆动载作用下,环氧沥青混凝土层和混凝土层拉应力明显;混凝土层最大纵向拉应力、横向拉应力、横向剪应力无路面不平度时分别为1.290、0.805、0.061 MPa, C级路面不平度时分别为2.230、2.060、0.067 MPa,分别增大72.868%、155.9%、9.836%;为保护铺装层,施工和运营期应控制路面不平度不低于A级。  相似文献   

16.
正交异性钢桥面-RPC薄层组合铺装体系研究   总被引:1,自引:0,他引:1  
为了综合解决钢桥面疲劳开裂和铺装层易损坏两大棘手问题,本文提出薄层活性粉末混凝土(RPC)钢桥面组合结构.正交异性钢桥面铺装有限元模型计算结果表明:相对于柔性铺装,组合铺装体系中铺装层最大拉应力、剪应变、竖向位移降幅分别为54.8%,78.9%和39.1%;组合铺装体系结合面抗剪试验及钢桥面-RPC悬臂梁抗拉疲劳试验结果表明:在高温(60℃)不利条件下,RPC与沥青磨耗层界面抗剪强度为1.3MPa;RPC与钢板抗剪栓钉承载力为66.75kN;在拉应力幅值7.5~14.5MPa条件下,钢桥面-RPC悬臂梁承受200万次疲劳荷载没有出现裂缝.研究结果显示,薄层组合桥面铺装体系,有效降低了铺装体系应力应变幅值以及局部竖向变形,且铺装层各结合面抗剪强度可以满足使用要求.  相似文献   

17.
目的研究沥青混凝土桥面铺装对正交异性钢桥面板疲劳性能的影响,提出合理的铺装层厚度与弹性模量.方法建立正交异性钢桥的有限元模型,并与试验结果进行对比,验证正交异性钢桥有限元模型及其边界条件的有效性;选取易产生疲劳裂缝4个典型位置的构造细节进行有限元分析,从而找到桥面铺装层厚度、弹性模量等铺装层参数对正交异性钢桥面板疲劳细节处应力幅的影响趋势;验算疲劳细节应力幅值是否小于《公路钢结构桥梁设计规范》(JTG D64—2015)中疲劳S-N曲线中相应疲劳细节的200万次循环疲劳强度35 MPa.结果当铺装层厚度自60 mm增加到100 mm时,疲劳细节的等效应力幅值逐渐下降,且呈线性递减趋势;铺装层厚度为70 mm时,其弹性模量应不小于5 000 MPa为宜;当其模量自1 000 MPa增加到10 000 MPa时,不同疲劳细节的等效应力幅值呈非线性下降趋势.当其模量增加到8 000 MPa时,疲劳细节的等效疲劳应力幅趋于稳定;铺装层材料的模量为3 000 MPa时,其铺装层厚度应不小于80 mm为宜.结论 4种疲劳细节中,与钢桥面板接触的疲劳细节其疲劳性能受铺装层厚度、铺装层模量影响比其他疲劳细节大.桥面铺装层能有效地降低疲劳细节的等效疲劳应力幅,改善正交异性钢桥面板的疲劳性能.  相似文献   

18.
钢桥面复合铺装结构永久变形预估   总被引:1,自引:0,他引:1  
针对浇注式与环氧沥青混凝土两种铺装材料组成的5类铺装结构,采用恒高度剪切疲劳试验对铺装材料的流变特性进行试验研究,根据试验结果,利用多元非线性回归方法获得基于Bailey-Norton模型的铺装材料高温蠕变参数;而后,建立正交异性钢桥面铺装复合结构有限元模型,仿真模拟60℃下铺装的永久变形;最后,利用等厚度修正的车辙试验对5类铺装结构的永久变形仿真结果进行了试验验证.研究表明:浇注与环氧组成的异性铺装结构中,铺装永久变形贡献率大部分是浇注式沥青混凝土,而环氧沥青混凝土的贡献率很小;浇注或环氧组成的双层同质铺装结构中,铺装车辙变形主要发生在上面层.研究内容为钢桥面铺装结构与材料的高温变形设计提供理论支撑.  相似文献   

19.
针对混凝土桥桥面铺装层间结构病害多发问题,将理论计算与室内试验相结合,找出层间结构最不利剪切位置,根据最不利剪切位置节点受到的层间剪应力与压应力所呈现的特殊线性关系,给出铺装结构层间剪切评价指标,同时进行层间剪切状态关键影响因素敏感性分析,并与存在垂直压力条件的组合结构层间抗剪强度回归方程建立联系,进行桥面铺装层间结构剪切行为分析。研究结果表明:双矩形均布荷载作用下,层间结构最不利剪切位置是荷载作用区域沿行车方向的前端边界线;层间结构剪切状态会随荷载水平力系数的增加而迅速恶化,对于层间结构一,水平力系数0.5时的拟合方程斜率为0.693,较水平力系数为0时的拟合方程斜率0.342增加了103%,增幅十分显著;不考虑材料本身剪切破坏情况下,增加层间结构上部沥青层厚度可在一定程度上改善其剪切状态;接地压强大于1.2MPa的车辆紧急刹车时,采用乳化沥青黏层的层间结构一有可能发生一次性剪切破坏;采用抛丸界面的层间结构二不会出现由于车辆超载而导致的一次性剪切破坏,而对于采用原状界面的层间结构二,接地压强为0.85MPa时车辆紧急刹车即可使其处于临界破坏状态。对于重载交通下的桥面铺装,建议层间结构采用SBS改性沥青黏层和抛丸调平层表面处治措施。  相似文献   

20.
胶粉改性沥青桥面防水层具有抗高低温性能好、抗施工损伤特性好、具有与沥青混凝土铺装层和水泥混凝土桥面板黏结性能好、环保等优点,利用黏弹性力学原理对设有胶粉改性沥青防水层的铺装结构进行受力特性分析,研究了防水层厚度、桥面铺装层厚度对桥面铺装结构抗剪性能的影响,并与室内试验结果进行了对比,结果符合良好.分析结果表明:随防水层厚度增加,最大剪应力值τmax会增大;随沥青混凝土铺装层厚度增加,τmax呈现先减小后增大趋势.沥青混凝土面层的厚度为13 cm时产生的τmax值最小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号