首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为实现高性能纤维增强树脂基复合材料低成本、一体化快速制造,本文研究了一种连续纤维增强热塑性复合材料3D打印技术。借鉴熔融沉积成形工艺,建立了其成形原理,设计了集成打印头模块并搭建原理样机,采用二级喷嘴对打印工艺参数进行调控,建立了工艺参数对纤维含量与力学性能的影响关系,在纤维体积含量达到44.1vol%时,连续碳纤维增强尼龙6复合材料的拉伸强度与模量达到405MPa与80.6GPa,弯曲强度与模量达到565.8MPa与62.1GPa。  相似文献   

2.
连续纤维自增强复合材料3D打印及其回收性能研究   总被引:1,自引:0,他引:1  
连续纤维增强复合材料3D打印工艺的出现,为复合材料构件低成本快速制造提供了一种新方法,为了充分利用3D打印连续纤维增强热塑性复合材料成形快,易成形复杂零部件的特点,结合自增强复合材料具有良好界面结合性,可循环利用的优势,分析了自增强复合材料3D打印技术研究的发展现状,提出一种利用过冷熔体成形连续纤维自增强复合材料的3D打印方法,设计了基于过冷的自增强复合材料熔融挤出打印喷头,采用聚苯硫醚(Polyphenylene sulfid,PPS)纤维与PPS树脂作为自增强复合材料原材料,探究自增强复合材料成形打印温度窗口、复合材料力学性能、微观界面结合性,以及对连续纤维自增强复合材料完全可回收性能研究分析。  相似文献   

3.
光-热双固化碳纤维增强复合材料3D打印成型综合了增材制造零件高精度无模快速成型和热固化基质材料力学性能优良的优势,具有广阔的应用前景。针对光-热双固化复合材料制件变形带来的制件疲劳寿命降低以及连接装配损伤等问题,综合考虑光固化动力学、热固化动力学及固化变形建立了光-热双固复合材料成型的多物理场理论模型,研究了复合材料光-热双固3D打印成型过程中单层固化厚度、光-热双固数值材料组分及纤维含量和长径比对制件变形的影响,并通过实验验证了模型及理论分析结论的正确性。结果表明,增加单层固化厚度从而减少分层数可以降低制件固化后的应力应变和翘曲变形;光-热双固化树脂中光固化树脂分数增加会使制件的翘曲变形量增大;提高纤维体积分数和纤维长径比可以降低制件膨胀系数,从而降低制件的翘曲变形量。复合材料光-热双固化3D打印成型过程的多物理场建模计算方法可以为相关研究提供借鉴,基于该方法的研究结果对于优化工艺参数从而提升成型质量具有参考价值。  相似文献   

4.
纤维增强树脂基复合材料具有轻质高强的优异特性,但传统成型工艺具有成本高、过程复杂、难以回收的缺点限制了复合材料的广泛应用,介绍了一种新的连续纤维增强热塑性复合材料3D工艺(CFRTPCs)及其回收再利用策略,建立成型过程与界面性能、力学性能的内在联系,打印连续碳纤维增强聚乳酸(CF/PLA)样件抗弯强度与模量分别达到390MPa与30.8GPa,实现了复合材料低成本一体化快速制造,其回收再利用过程无污染,材料利用率为75%,二次打印样件抗弯强度提高25%左右,实现了复合材料高效高性能绿色回收再利用,二者结合形成一种全生命周期复合材料应用模式。  相似文献   

5.
针对多复合材料3D打印制造中利用连续纤维增强模型强度问题,提出利用拓扑优化技术对模型进行增强的方法,提升其力学性能。基于变密度法中的固体各向同向材料惩罚(Solid Isotropic Material with Penalization, SIMP)方法,引入体积分数常量,求解出模型的拓扑结构;建立采用增强材料填充拓扑结构、基础材料填充空洞结构的多复合材料3D打印材料分布模型,从而使得模型的整体结构得到强化。为验证该方法的可行性,以120 mm×80 mm×10 mm的矩形小板为例,利用ANSYS软件建立静力学仿真模型,与未增强模型力学分析结果进行对比,得到采用层间增强、轮廓增强和拓扑增强的模型在Y方向上的位移降低幅度分别为88.90%、87.10%和94.13%,采用拓扑增强的模型位移降低幅度最大;拓扑增强相对于轮廓增强和层间增强在Y方向位移上分别降低了50.79%和54.65%,表明该方法适用于多复合材料3D打印。根据仿真内容进行静力学实验分析,实验结果表明优化结构对比未优化结构在位移上减小了39.6%,证明了该方法对于复合材料3D增强打印具有实用价值。  相似文献   

6.
以“独立挤出”型连续碳纤维增强PLA复合材料(continuous carbon fiber reinforced PLA composite, CCFRC/PLA)3D打印制件为研究对象,设计了柔性的连续碳纤维增强PLA复合材料丝(continuous carbon fiber reinforced composite filament/PLA, CCFRCF/PLA)送丝机构,研究了打印喷嘴直径与CCFRCF/PLA直径、表面包裹树脂膨胀特性及打印层高的关系,探讨了喷嘴端面直径对打印表面热辐射的影响规律,推导了喷嘴直径的计算公式,求解了最佳喷嘴直径和最佳端面直径。基于设计的打印喷头,采用仿真分析与实验验证的方法,探索了打印层高与制件力学性能之间的关系,结果表明CCFRC/PLA的抗拉强度与纤维层数呈正相关,并验证了层合板预测模型的有效性,获得了打印层高0.1 mm时CCFRC/PLA抗拉强度的修正系数为0.039,打印层高0.2 mm时,修正系数为0.124,为连续碳纤维增强复合材料3D打印技术的发展提供了理论基础和参考价值。  相似文献   

7.
连续碳纤维复合材料3D打印的成型质量与成型性能受到三维成型过程中温度、速度、层高等多工艺条件及复合材料本身、打印喷头等多物理参数的影响,合理工艺参数的选择是高质量碳纤维三维成型的保证。针对碳纤维长纤复合材料连续性与各向异性的特点,研究了连续碳纤维3D打印的系统构成与工艺模型,分析了三维成型过程中不同工艺参数与成型结果间的影响关系,通过3D打印实验验证理论分析的正确性。研究为连续碳纤维复合材料3D打印合理工艺条件的选择提供了依据。  相似文献   

8.
在综述纤维增强树脂基复合材料增材制造技术的国内外研究现状基础上,分析了短纤维、长纤维、连续纤维增强树脂基复合材料的成形方法、工艺及性能。针对高性能的连续纤维增强树脂基复合材料的增材制造成形,研究了连续纤维增材制造成形机理及工艺,揭示了其成形性能的影响规律。指出了纤维增强树脂基复合材料增材制造技术与装备的未来发展趋势:亟需开展纤维增强复合材料的增材制造成形机理、成形工艺及装备研究,更好地推进纤维增强树脂基复合材料的广泛应用。  相似文献   

9.
在综述纤维增强树脂基复合材料增材制造技术的国内外研究现状基础上,分析了短纤维、长纤维、连续纤维增强树脂基复合材料的成形方法、工艺及性能。针对高性能的连续纤维增强树脂基复合材料的增材制造成形,研究了连续纤维增材制造成形机理及工艺,揭示了其成形性能的影响规律。指出了纤维增强树脂基复合材料增材制造技术与装备的未来发展趋势:亟需开展纤维增强复合材料的增材制造成形机理、成形工艺及装备研究,更好地推进纤维增强树脂基复合材料的广泛应用。  相似文献   

10.
为了实现汽车尾门的轻量化,提出基于增材制造的复合材料尾门设计的方法。在汽车的轻量化设计中,复合材料扮演着越来越重要的角色。3D打印可以实现复杂轻量化结构,但是存在某些性能达不到要求、成本高等问题。提出基于3D打印的钢骨架加复合材料的尾门设计方法,在满足尾门刚度、强度等力学性能的基础上实现比原有结构轻42%的结果。为了满足尾门的批量制造成本要求,研发出了专用装备。  相似文献   

11.
采用质量分数为20%的连续玻璃纤维和质量分数为10%的短切玻璃纤维以模压工艺制备不饱和聚酯基复合材料,研究了纤维类型对复合材料模压工艺以及力学性能的影响,并与质量分数为30%连续纤维增强的不饱和聚酯基复合材料进行了对比。结果表明:与连续纤维增强不饱和聚酯基复合材料相比,连续纤维与短切纤维混合增强复合材料的拉伸性能和弯曲性能略有下降,但模压工艺性能和压缩性能有所提高,纤维在基体中分布较为均匀,纤维相互交叉,散乱分布。  相似文献   

12.
变刚度复合材料是一种高性能材料,其连续变化的铺丝角度相比传统直纤维具有更大设计裕度,但其设计、制造难度也相应增加。充分发挥变刚度复合材料的性能,亟待性能更好、更高效的全局优化方法。受制造工艺的掣肘,目前的变刚度复合材料仍有诸多缺陷。缺陷的存在使仿真结果严重偏离实际,进而严重影响系统的可靠性和安全性,甚至可能导致相关系统的失效。然而,业内却缺少对于变刚度复合材料不确定性分析的研究。主要对变刚度复合材料优化策略和不确定性分析进行综合评述,论述变刚度复合材料建模方法、优化方法和不确定性分析技术的研究历程和技术发展,并根据当前变刚度复合材料的发展现状和主要成果,从优化、分析和制造等方面对其未来发展提出几点建议。  相似文献   

13.
针对目前功能梯度材料制造方法的单一和不足,文中提出一种新的聚合物功能梯度材料生产工艺——利用多材料3D打印工艺制造功能梯度材料零件。首先介绍了多材料3D打印的工作原理;其次,通过制作两个功能梯度零件:变密度材料和变刚度材料,验证了利用多材料3D打印技术制造聚合物功能梯度材料的可行性,对于后续研究具有重要的指导意义。  相似文献   

14.
连续纤维复合材料增材制造具有成形自由度高、材料利用率高、模具依赖度低等优点,能够实现复合材料的快速低成本一体化制造,满足航空航天等领域复材构件短周期高性能的成形需求。但基于层层堆积成形原理的连续纤维复合材料制件层间性能较差,在长期使役过程中极易出现分层失效,严重限制其广泛应用。本研究提出了基于激光原位预热的连续纤维增材制造成形方法,通过建立基于“生死单元”技术的有限元仿真模型,揭示了激光预热对增材制造成形温度分布及其演变规律,并通过实验验证了其对改善成形制件层间性能的有效性,最终获得了激光预热的层间强化机理。结果表明,激光预热能够快速加热样件表面温度,促进层间树脂的熔合粘接,并进一步促进成形丝材的重熔浸渍,相较于未经预热样件,激光预热后层间剪切强度最大提升115%。  相似文献   

15.
传统的3D打印技术逐渐无法满足高端制造领域对构件的要求,材料-结构-功能一体化增材制造即4D打印技术将是新的发展方向。为此,选取热塑性聚氨酯(TPU)/钕铁硼(NdFeB)磁性复合材料体系,采用激光选区烧结(Selective laser sintering,SLS)工艺成形具有不同Nd FeB含量的复合材料成形件,研究了复合粉末的粒度及其分布、微观形貌、成形前后化学基团演变,成形件晶体结构、力学性能及变形行为,结果表明Nd Fe B含量会影响复合材料成形件的力学性能和变形行为,增加Nd Fe B含量能够增大成形件在磁场中受到的作用力;当Nd Fe B含量在复合材料中质量分数为30%时,复合材料成形件拥有最佳的拉伸强度。本研究将TPU/NdFeB复合材料体系作为一种创新的4D打印材料,成形的磁性智能构件在磁场中发生变形,实现了磁场驱动的4D打印,对4D打印磁性智能构件的发展具有指导意义。  相似文献   

16.
针对当前聚合物基复合材料(Polymer matrix composites,PMC)成型存在打印分辨率低、打印材料受限、成型结构较为简单、工序复杂等方面的不足和局限性,尤其是还面临难以实现宏/微结构跨尺度高效制造的挑战性难题,提出一种基于电场驱动熔融喷射PMC高分辨率3D打印新工艺。阐述了基于电场驱动熔融喷射PMC高分辨率3D打印的基本原理和工艺流程。通过试验,揭示了主要工艺参数(碳填料含量、施加电压、螺杆转速、打印速度、加热温度等)对于打印件分辨率(精度)和质量的影响及其规律。利用自主搭建的试验平台,并结合试验优化的工艺参数和提出的两种打印模式,实现了多层石墨烯/聚乳酸(Polylactic acid,PLA)和多壁碳纳米管/PLA复合材料微尺度三维网格、多层石墨烯/PLA大高宽比薄壁圆环、多壁碳纳米管/PLA复合材料柔性导电网格以及其他聚合物复合材料3D结构典型工程案例的制造。研究结果表明,提出的电场驱动熔融喷射3D打印能实现高分辨聚合物基复合材料成型(使用内径300 μm喷嘴,实现了分辨率为40 μm的PMC特征结构制造),而且还具有大面积宏/微结构跨尺度集成制造的优势。  相似文献   

17.
提出一种以平行四边形为基本单元的水弹(waterboom,以下称"水弹")轮结构及基于复合材料利用3D打印工艺制作水弹轮实体模型的方法.利用Abaqus仿真软件对仿真模型进行轴向压缩仿真试验,验证了制作工艺的可行性.对制作出的实体模型进行轴向压缩试验,验证了仿真结果的准确性.建立了不同结构参数的仿真模型,利用ABAQUS软件进行有限元仿真,得到了结构参数对轴向刚度的影响规律.研究结果表明,利用复合材料软硬结合3D打印工艺制作水弹轮结构可以有效降低水弹轮结构刚度、提高变形能力,对其实际应用的研究具有重要参考价值.  相似文献   

18.
SMA纤维复合材料板簧刚度性能分析   总被引:3,自引:0,他引:3  
根据SMA本构关系理论、复合材料力学理论和经典材料力学理论,利用SMA的受限回复特性,建立预应变的SMA纤维复合材料板簧分析模型,导出板簧刚度数学式.通过理论分析和数值计算相结合的方法,讨论了温度的改变、SMA纤维含量、铺层方式等参数对结构刚度的影响.研究结果揭示了SMA纤维复合材料板簧刚度调节性能与温度、SMA纤维含量、铺层方式之间的规律.  相似文献   

19.
以3D打印制造的汽车空调开关座样件为研究对象,利用3D打印技术制作样件,探讨3D打印样件在汽车零/部件新产品试制中的可行性。对比分析了3D打印样件与注射成型的工程样件(Off Tooling Samples,OTS)工艺流程的差异,体现了3D打印样件的无模制造特点。参照QC/T 15—1992《汽车塑料制品通用试验方法》等有关国家及行业标准,结合材料强度理论,通过试验验证了3D打印样件的力学性能和耐温特性。分析试验结果,找出了3D打印样件与OTS样件及常规ABS塑料在拉伸、弯曲和冲击性能方面的差异性。研究结果表明,与OTS样件比较,3D打印样件在拉伸、弯曲和冲击性能方面还存在一定的差距,提出了3D打印样件用于新产品开发过程中的外观效果评估、工艺验证、尺寸及功能验证的建议。  相似文献   

20.
大多数3D打印制造涉及热加工,其面临的主要问题是热应力和残余应力对加工过程中薄层性能的影响。为此提出了一种能够进行数值模拟的新型3D打印制造系统,通过建立基于粉末材料物理性能的自适应切片方法,从而可以快速实现最佳的工艺规范。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号