首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The in vitro metabolism of cortisol in human liver fractions is highly complex and variable. Cytosolic metabolism proceeds predominantly via A-ring reduction (to give 3,5β-tetrahydrocortisol; 3,5β-THF), while microsomal incubations generate upto 7 metabolites, including 6β-hydroxycortisol (6β-OHF), and 6β-hydroxycortisone (6β-OHE), products of the cytochrome P450 (CYP) 3A subfamily. The aim of the present study was, therefore, to examine two of the main enzymes involved in cortisol metabolism, namely, microsomal 6β-hydroxylase and cytosolic 4-ene-reductase. In particular, we wished to assess the substrate specificity of these enzymes and identify compounds with inhibitory potential. Incubations for 30 min containing [3H]cortisol, potential inhibitors, microsomal or cytosolic protein (3 mg), and co-factors were followed by radiometric HPLC analysis. The Km value for 6β-OHF and 6β-OHE formation was 15.2 ± 2.1 μM (mean ± SD; n = 4) and the Vmax value 6.43 ± 0.45 pmol/min/mg microsomal protein. The most potent inhibitor of cortisol 6β-hydroxylase was ketoconazole (Ki = 0.9 ± 0.4 μM; N = 4), followed by gestodene (Ki = 5.6 ± 0.6 μM) and cyclosporine (Ki = 6.8 ± 1.4 μM). Both betamethasone and dexamethasone produced some inhibition (Ki = 31.3 and 54.5 μ, respectively). However, substrates for CYP2C (tolbutamide), CYP2D (quinidine), and CYP1A (theophylline) were essentially non-inhibitory. The Km value for cortisol 4-ene-reductase was 26.5 ± 11.2 μM (n = 4) and the Vmax value 107.7 ± 46.0 pmol/min/mg cytosolic protein. The most potent inhibitors were androstendione (Ki = 17.8 ± 3.3 μM) and gestodene (Ki = 23.8 ± 3.8 μM). Although both compounds have identical A-rings to cortisol, and undergo reduction, inhibition was non-competitive.  相似文献   

2.
Androst-4-ene-3,17-dione (androstenedione) was found to be a potent competitive inhibitor of the NADH-supported reduction of retinal in rat hepatic microsomes (Ki 42 μM, Km/Ki ratio 1.1). Similarly, the NADH-mediated reduction of androstenedione was inhibited in mixed fashion by retinal (Ki 12 μM, Km/Ki ratio 0.34). In subsequent experiments the cofactor NADH exhibited an identical Km (8 μM) in the microsomal reductions of both substrates. Acidic pH markedly stimulated the microsomal reduction of androstenedione to testosterone and was also found to enhance retinal reduction to retinol, although the latter reaction exhibited a district pH optimum between 6.0 and 6.5. These results suggest that a common enzyme may participate in the reduction of both substrates but at least one other enzyme probably participates in hepatic microsomal testosterone production.  相似文献   

3.
Androgen aromatase was found to also be estrogen 2-hydroxylase. The substrate specificity among androgens and estrogens and multiplicity of aromatase reactions were further studied. Through purification of human placental microsomal cytochrome P-450 by monoclonal antibody-based immunoaffinity chromatography and gradient elution on hydroxyapatite, aromatase and estradiol 2-hydroxylase activities were co-purified into a single band cytochrome P-450 with approx. 600-fold increase of both specific activities, while other cytochrome P-450 enzyme activities found in the microsomes were completely eliminated. The purified P-450 showed Mr of 55 kDa, specific heme content of 12.9 ± 2.6 nmol·mg−1 (±SD, N = 4), reconstituted aromatase activity of 111 ± 19 nmol·min−1·mmg−1 and estradiol 2-hydroxylase activity of 5.85 ± 1.23 nmol·min−1·mg−1. We found no evidence for the existence of catechol estrogen synthetase without concomitant aromatase activity. The identity of the P-450 for the two different hormone synthetases was further confirmed by analysis of the two activities in the stable expression system in Chinese hamster ovarian cells transfected with human placental aromatase cDNA, pH β-Aro. Kinetic analysis of estradiol 2-hydroxylation by the purified and reconstituted aromatase P-450 in 0.1 M phosphate buffer (pH 7.6) showed Km of 1.58 μM and Vmax of 8.9 nmol·min−1·mg−1. A significant shift of the optimum pH and Vmax, but not the Km, for placental estrogen 2-hydroxylase was observed between microsomal and purified preparations. Testosterone and androstenedione competitively inhibited estradiol 2-hydroxylation, and estrone and estradiol competitively inhibited aromatization of both testosterone and androstenedione. Estrone and estradiol showed Ki of 4.8 and 7.3 μM, respectively, for testosterone aromatization, and 5.0 and 8.1 μM, respectively, for androstenedione aromatization. Androstenedione and testosterone showed Ki of 0.32 and 0.61 μM, respectively, for estradiol 2-hydroxylation. Our studies showed that aromatase P-450 functions as estrogen 2-hydroxylase as well as androgen 19-, 1β-,and 2β-hydroxylase and aromatase. The results indicate that placental aromatase is responsible for the highly elevated levels of the catechol estrogen and 19-hydroxyandrogen during pregnancy. These results also indicate that the active site structure holds the steroid ssubstrates to face their β-side of the A-ring to the heme, tilted in such a way as to make the 2-position of estrogens and 19-, 1-, and 2-positions of androgens available for monooxygenation.  相似文献   

4.
The hydrolysis of steroid sulphates, by steroid sulphatase, is an important source of oestrogenic steroids (oestrone, oestradiol and 5-androstene-3β,17β-diol) which are found in tumours. In the present study, we have examined the effect of dehydroepiandrosterone-3-O-methylthiophosphonate (DHA-3-MTP), pregnenolone-3-O-methylthiophosphonate (pregnenolone-3-MTP) and cholesterol-3-O-methylthiophosphonate (cholesterol-3-MTP) on the inhibition of oestrone sulphatase as well as DHA sulphatase activities in intact MCF-7 breast cancer cells and in placental microsomes. All three methylthiophosphonates significantly (P< 0.01) inhibited the hydrolysis of oestrone sulphate (E1 S) in intact MCF-7 cells (31–85% inhibition at 1 μM and 53–97% inhibition at 10 μM). Significant inhibition of DHA sulphatase was also achieved. At a concentration of 50 μM, all three compounds inhibited the hydrolysis of dehydroepiandrosterone sulphate (DHAS) by > 95%. Using human placental microsomes, the Km and Vmax of E1S were determined to be 8.1 μM and 43 nmol/h/mg protein. The corresponding Ki values for DHA-3-MTP, pregnenolone-3-MTP and cholesterol-3-MTP were found to be 4.5, 1.4 and 6.2 μM, respectively. Such inhibitors which are resistant to metabolism may have considerable potential as therapeutic agents and may have additional advantage over aromatase inhibitors in also reducing tumour concentrations of the oestrogenic steroid, 5-androstene-3β,17β-diol, by inhibiting the hydrolysis of DHAS.  相似文献   

5.
To study mechanisms of aromatase inhibition in brain cells, a highly effective non-steroidal aromatase inhibitor (Fadrozole; 4-[5,6,7,8-tetra-hydroimidazo-(1,5-a)-pyridin-5-yl] benzonitrile HCl; CGS 16949A) was compared with endogenous C-19 steroids, known to be formed in the preoptic area, which inhibit oestrogen formation. Using a sensitive in vitro tritiated water assay for aromatase activity in avian (dove) preoptic tissue, the order of potency, with testosterone as substrate was: Fadrozole (Ki < 1 × 10−9 M) > 4-androstenedione 5-androstanedione > 5-dihydrotestosterone (Ki = 6 × 10−8 M) > 5β-androstanedione > 5β-dihydrotestosterone (Ki = 3.5 × 10−7 M) > 5-androstane-3, 17β-diol (Ki = 5 × 10−6 M) > 5β-androstane-3β,17β-diol. Five other steroids, 5β-androstane-3,17β-diol, 5-androstane-3β,17β-diol, progesterone, oestradiol and oestrone, showed no inhibition at 10−4 M. The kinetics indicate that endogenous C-19 steroids show similar competitive inhibition of the aromatase as Fadrozole. Mouse (BALB/c) preoptic aromatase was also inhibited by Fadrozole. We conclude that endogenous C-19 metabolites of testosterone are effective inhibitors of the brain aromatase, and suggest that they bind competitively at the same active site as Fadrozole.  相似文献   

6.
The synthetic decapeptide H-SLTCLVKGFY-OH (termed immunorphin) corresponding to the sequence 364–373 of the CH3 domain of human immunoglobulin G heavy chain was found to compete with [125I]β-endorphin for high-affinity receptors on T lymphocytes from the blood of healthy donors (Ki = 0.6 nM). Besides immunorphin, its synthetic fragments H-Val-Lys-Gly-Phe-Tyr-OH (Ki = 15 nM), H-Leu-Val-Lys-Gly-Phe-Tyr-OH (Ki = 8.0 nM), H-Cys-Leu-Val-Lys-Gly-Phe-Tyr-OH (Ki = 3.4 nM), H-Thr-Cys-Leu-Val-Lys-Gly-Phe-Tyr-OH (Ki = 2.2 nM), H-Leu-Thr-Cys-Leu-Val-Lys-Gly-Phe-Tyr-OH (Ki = 1.0 nM) possessed the ability to inhibit specific binding of [125I]β-endorphin to T lymphocytes. Tests of the specificity of the receptors revealed that they are not sensitive to naloxone and Met-enkephalin, i.e. they are not opioid receptors. Kd values characterizing the specific binding of 125I- labeled immunorphin and its fragment H-Val-Lys-Gly-Phe-Tyr-OH to the receptors have been determined to be 7.4 nM and 36.3 nM, respectively.  相似文献   

7.
In the adult rat, the duodenal tissue of both sexes can convert progesterone to 17-hydroxyprogesterone, androstenedione and testosterone. The transition from C21 to C19 steroids is apparently controlled by the same cytochrome P450c17 expressed in the testis, which catalyzes both 17-hydroxylation and C-17,20 bond scission at a single bifunctional active site. The kinetic parameters of this enzyme were measured at the steady state for both reactions using [1,2-3H]progesterone and [1,2-3H]17-hydroxyprogesterone as substrates. In the testis and male and female duodena, the Km values for progesterone 17-hydroxylation were 14.2, 23.8 and 23.2 nM, whereas the Vmax values were 105, 3.5 and 3.1 pmol/mg protein/min, respectively. With respect to C-17,20 lyase activity, the Km values for exogenous 17-hydroxyprogesterone were 525, 675 and 637 nM, whereas the Vmax values were 283, 7.8 and 7.8 pmol/mg protein/min, respectively. However, when the Km values were calculated with respect to intermediate 17-hydroxyprogesterone formed from progesterone, they were similar to the Km values for 17-hydroxylase, being 15, 31.4 and 24.8 nM, whereas the Vmax values were 26.3, 2 and 1.8 pmol/mg protein/min, respectively. The similarity of Km values is due to the fact that the relative androgen formation efficiency (bond scission events/total 17-hydroxylation events ratio) was remarkably constant in both testicular and duodenal incubates, irrespective of progesterone concentration. Efficiency values were 2-fold higher in duodenal tissue (0.54) than in testis (0.25). Estradiol-17β inhibited 17-hydroxylation but not bond scission on intermediate 17-hydroxyprogesterone, because it did not affect the efficiency value. Rat duodenal P450c17 has the same substrate affinity, a lower specific activity and a higher androgen formation efficiency than testicular P450c17.  相似文献   

8.
The success in synthesis of [3H]5-androstene-3,17-dione, the intermediate product in the transformation of DHEA to 4-androstenedione by 3β-hydroxysteroid dehydrogenase/ 5-ene→4-ene isomerase (3β-HSD) offers the opportunity to determine whether or not the two activities reside in one active site or in two closely related active sites. The finding that N,N-dimethyl-4-methyl-3-oxo-4-aza-5-androstane-17β-carboxamide (4-MA) inhibits competitively and specifically the dehydrogenase activity whereas a non-competitive inhibition type with a Ki value 1000 fold higher was observed for the isomerase activity, indicated that dehydrogenase and isomerase activities belong to separate sites. Using 5-dihydro-testosterone and 5-androstane-3β,17β-diol, exclusive substrates for dehydrogenase activity, it was shown that dehydrogenase is reversible and strongly inhibited by 4-MA and that thus the irreversible step in the transformation of DHEA to 4-androstenedione is due to the isomerase activity.  相似文献   

9.
In order to better understand the function of aromatase, we carried out kinetic analyses to asses the ability of natural estrogens, estrone (E1), estradiol (E2), 16-OHE1, and estriol (E3), to inhibit aromatization. Human placental microsomes (50 μg protein) were incubated for 5 min at 37°C with [1β-3H]testosterone (1.24 × 103 dpm 3H/ng, 35–150 nM) or [1β-3H,4-14C]androstenedione (3.05 × 103 dpm 3H/ng, 3H/14C = 19.3, 7–65 nM) as substrate in the presence of NADPH, with and without natural estrogens as putative inhibitors. Aromatase activity was assessed by tritium released to water from the 1β-position of the substrates. Natural estrogens showed competitive product inhibition against androgen aromatization. The Ki of E1, E2, 16-OHE1, and E3 for testosterone aromatization was 1.5, 2.2, 95, and 162 μM, respectively, where the Km of aromatase was 61.8 ± 2.0 nM (n = 5) for testosterone. The Ki of E1, E2, 16-OHE1, and E3 for androstenedione aromatization was 10.6, 5.5, 252, and 1182 μM, respectively, where the Km of aromatase was 35.4 ± 4.1 nM (n = 4) for androstenedione. These results show that estrogens inhibit the process of andrigen aromatization and indicate that natural estrogens regulate their own synthesis by the product inhibition mechanism in vivo. Since natural estrogens bind to the active site of human placental aromatase P-450 complex as competitive inhibitors, natural estrogens might be further metabolized by aromatase. This suggests that human placental estrogen 2-hydroxylase activity is catalyzed by the active site of aromatase cytochrome P-450 and also agrees with the fact that the level of catecholestrogens in maternal plasma increases during pregnancy. The relative affinities and concentration of androgens and estrogens would control estrogen and catecholestrogen biosynthesis by aromatase.  相似文献   

10.
Human type I placental 3β-hydroxy-5-ene-steroid dehydrogenase/steroid 5→4-ene-isomerase (3β-HSD/isomerase) synthesizes androstenedione from fetal dehydroepiandrosterone and progesterone from pregnenolone. The full length cDNA that encodes type I 3β-HSD/isomerase was inserted into the baculovirus, Autographa californica multiple nucleocapsid polyhedrosis virus, and expressed in Spodoptera fungiperda (Sf-9) insect cells. Western blots showed that the baculovirus-infected Sf-9 cells produced an immunoreactive protein that co-migrated with purified placental 3β-HSD/isomerase. Ultracentrifugation localized the expressed enzyme activities in all the membrane-associated organelles of the Sf-9 cell (nuclear, mitochondrial and microsomal). Kinetic studies showed that the expressed enzyme has 3β-HSD and isomerase activities. The Michaelis-Menton constant is very similar for the 3β-HSD substrate, 5-androstan-3β-o1-17-one, in the Sf-9 cell homogenate (Km = 17.9 μM) and placental microsomes (Km = 16.7 μM). The 3β-HSD activity (Vmax = 14.5 nmol/min/mg) is 1.6-fold higher in the Sf-9 cell homogenate compared to placental microsomes (Vmax = 9.1 nmol/min/mg). The Km values are almost identical for the isomerase substrate, 5-androstene-3,17-dione, in the Sf-9 cell homogenate (Km = 14.7 μM) and placental microsomes (Km = 14.4 μM). The specific isomerase activity is 1.5-fold higher in the Sf-9 cells (Vmax = 25.7 nmol/min/mg) relative to placenta (Vmax = 17.2 nmol/min/mg). These studies show that our recombinant baculovirus system over-expresses fully active enzyme that is kinetically identical to native 3β-HSD/isomerase in human placenta.  相似文献   

11.
ATPase activity of photosynthetic membrane fragments from the bacterium Rhodopseudomonas capsulata can be stimulated by continuous illumination under conditions of active cyclic electron flow. The activation corresponds to an increase in the maximum velocity of the reaction and does not affect the apparent Km for ATP (0.11 mM). No stimulation in the light is observed in the presence of classical uncouplers or oxidized 2,6-dichlorophenolindophenol (DCIP), which, per se, stimulate ATPase in the dark. It is demonstrated, however, that oxidized DCIP acts as an uncoupler of bacterial photophosphorylation.

The effect of light is elicited after a few minutes of preillumination, or in a much shorter time if an ADP trapping system is supplied. Activation does not occur if ADP is added during the preillumination (apparent Km for inhibition by ADP = 1 μM). The effect of ADP is not related to competitive inhibition with ATP, which can be observed at higher concentrations (apparent Ki = 0.26 mM). ADP, however, is not effective if added after some minutes of preillumination.  相似文献   


12.
Hydroxylated 2,19-methylene-bridged androstenediones were designed as potential mimics of enzyme oxidized intermediates of androstenedione. These compounds exhibited competitive inhibition with low micromolar affinities for aromatase. These inhibitory constants (Ki values) were 10 times greater than the 2,19-methylene-bridged androstenedione constant (Ki = 35–70 nM). However, expansion of the 2,19-carbon bridge to ethylene increased aromatase affinity by 10-fold (Ki = 2 nM). Substitution pf a methylene group with oxygen and sulfur in this expanded bridge resulted in Ki values of 7 and 20 nM, respectively. When the substituent was an NH group, the apparent inhibitory kinetics changed from competitive to uncompetitive. All of these analogs exhibited time-dependent inhibition of aromatase activity following preincubation of the inhibitor with human placental microsomes prior to measuring residual enzyme activity. Part of this inhibition was NADPH cofactor-dependent for the 2,19-methyleneoxy- but not for the 2,19-ethylene-bridged androstenedione. The time-dependent inhibition for these four analogs was very rapid since they exhibited τ50 values, the t1/2 for enzyme inhibition at infinite inhibitor concentration, of 1 to 3 min. These A-ring-bridged androstenedione analogs represent a novel series of potent steroidal aromatase inhibitors. The restrained A-ring bridge containing CH2, O, S, or NH could effectively coordinate with the heme of the P450 aromatase to allow the tight-binding affinities reflected by their nanomolar Ki values.  相似文献   

13.
Yan QJ  Wang L  Jiang ZQ  Yang SQ  Zhu HF  Li LT 《Bioresource technology》2008,99(13):5402-5410
An extracellular β-xylosidase from the thermophilic fungus Paecilomyces thermophila J18 was purified 31.9-fold to homogeneity with a recovery yield of 2.27% from the cell-free culture supernatant. It appeared as a single protein band on SDS–PAGE with a molecular mass of approx 53.5 kDa. The molecular mass of β-xylosidase was 51.8 kDa determined by Superdex 75 gel filtration. The enzyme was a glycoprotein with a carbohydrate content of 61.5%. It exhibited an optimal activity at 55 °C and pH 6.5, respectively. The enzyme was stable in the range of pH 6.0–9.0 and at 55 °C. The purified enzyme hydrolyzed xylobiose and higher xylooligosaccharides but was inactive against xylan substrates. It released xylose from xylooligosaccharides with a degree of polymerization ranging between 2 and 5. The rate of xylose released from xylooligosaccharides by the purified enzyme increased with increasing chain length. It had a Km of 4.3 mM for p-nitrophenol-β-d-xylopyranoside and was competitively inhibited by xylose with a Ki value of 139 mM. Release of reducing sugars from xylans by a purified xylanase produced by the same organism increased markedly in the presence of β-xylosidase. During 24-hour hydrolysis, the amounts of reducing sugar released in the presence of added β-xylosidase were about 1.5–1.73 times that of the reaction employing the xylanase alone. This is the first report on the purification and characterization of a β-xylosidase from Paecilomyces thermophila.  相似文献   

14.
The behaviour of five different hydrophobic β-galactosidase derivatives, obtained by grafting different amount of butylmethacrylate (BMA) on planar nylon membranes, has been studied under isothermal and non-isothermal conditions.

Under isothermal conditions the effect of the grafting percentage on the enzyme activity has been studied as a function of pH, temperature and substrate concentration. Independently from the parameters under observation, the yield of the catalytic process reaches the maximum value at a grafting percentage value equal to 21%. The apparent Km values result linearly increasing with the increase of the grafting percentage, while the apparent Vmax exhibits a maximum value.

Under non-isothermal conditions, a decrease of the apparent Km values and increase of the apparent Vmax has been found in respect to the same values obtained under isothermal conditions.

The percentage activity increases induced by the presence of a temperature gradient have been found to decrease with the increase of the percentage of graft BMA.

A parameter correlating the percentage increase of enzyme activity under non-isothermal conditions with the hydrophobicity of the catalytic membrane has also been identified. This parameter is the ratio between thermoosmotic and hydraulic permeability.

Results have been discussed in terms of reduction of diffusion limitations for substrate and products movement towards or away from the catalytic site by the process of thermodialysis.

The usefulness of using non-isothermal bioreactors in industrial biotechnological processes has been confirmed.  相似文献   


15.
M. J. Harvey  A. P. Brown 《BBA》1969,180(3):520-528

1. 1. Esterification of 32P1 by illuminated chloroplasts prepared on a sucrose gradient was examined to establish the optimal incubation conditions.

2. 2. The evidence is consistent with phosphorylation being closely coupled to the sum of noncyclic and pseudocyclic electron flow and with the rate of electron flow responding to the availability of electron acceptors.

3. 3. Apparent Km values for ADP and Mg2+ were found to be 40 and 250 μM, respectively. The Km value for Mg2+ was increased by the presence of Ca2+. Two apparent values were observed for P1 at 0.2 and 1.1 mM. Chloroplast damage resulted in increased apparent Km (P1) values.

4. 4. Acceleration of the esterification resulting from the addition of ADP and P1 to the medium indicated that these compounds were able to penetrate to the active site of esterification.

5. 5. Ribose 5-phosphate (Rib-5-P) was shown to inhibit P1 esterification without affecting the apparent Km for ADP or P1. The evidence suggests that Rib-5-P interferes with the uptake of P1, and possibly ADP.

Abbreviations: PMS, phenazine methosulphate; CMU, 1-(p-chlorophenyl)-3,3′-dimethylurea  相似文献   


16.
Y. Lam  D. J. D. Nicholas 《BBA》1969,180(3):459-472
The formation of nitrite reductase and cytochrome c in Micrococcus denitrificans was repressed by O2. The purified nitrite reductase utilized reduced forms of cytochrome c, phenazine methosulphate, benzyl viologen and methyl viologen, respectively, as electron donors. The enzyme was inhibited by KCN, NaN3 and NH2OH each at 1 mM, whereas CO and bathocuproin, diethyl dithiocarbamate, o-phenanthroline and ,'-dipyridyl at 1 mM concentrations were relatively ineffective. The purified enzyme contains cytochromes, probably of the c and a2 types, in one complex. A Km of 46 μM for NO2 and a pH optimum of 6.7 were recorded for the enzyme. The molecular weight of the enzyme was estimated to be around 130000, and its anodic mobility was 6.8·10−6 cm2·sec−1·V−1 at pH 4.55.

The most highly purified nitrite reductase still exhibited cytochrome c oxidase activity with a Km of 27 μM for O2. This activity was also inhibited by KCN, NaN3 and NH2OH and by NO2.

A constitutive cytochrome oxidase associated with membranes was also isolated from cells grown anaerobically with NO2. It was inhibited by smaller amounts of KCN, NaN3 and NH2OH than the cytochrome oxidase activity of the nitrite reductase enzyme and also differed in having a pH optimum of about 8 and a Km for O2 of less than 0.1 μM. Spectroscopically, cytochromes b and c were found to be associated with the constitutive oxidase in the particulate preparation. Its activity was also inhibited by NO2.

The physiological role of the cytochrome oxidase activity associated with the purified nitrite reductase is likely to be of secondary importance for the following reasons: (a) it accounts for less than 10% of total cytochrome c oxidase activity of cell extracts; (b) the constitutive cytochrome c oxidase has a smaller Km for O2 and would therefore be expected to function more efficiently especially at low concentrations of O2.  相似文献   


17.
Substrate specificities and the kinetic parameters, Km and Vmax, of the four multiple enzyme forms of extracellular β-mannanase activity purified from Polyporus versicolor were determined. Although Km values were significantly greater than those encountered in other β-mannanase systems Vmax values were equivalent or much greater, rendering the physiological efficiencies of the β-mannanase comparable to those of other β-mannanases. All enzymes preferred glucomannan as substrate, were highly refractory at low concentrations to n-octylglucopyranoside, sodium deoxylcholate, and sodium dodecylsulfate, and were largely insensitive to methanol, ethanol, acetonitrile, and dimethylsulfoxide.  相似文献   

18.
Brain sexual differentiation occurs during steroid-sensitive phases in early development, and is affected particularly by exposure to oestrogens formed in the brain by aromatisation of androgen. The organisational effects of oestrogen result in male-specific neuronal morphology, control of reproductive behaviour, and patterns of gonadotrophin secretion. A question which still has to be resolved is what determines changes in aromatase activity effective for the differentiation of sexually dimorphic brain development during sensitive periods of growth. In the mouse, a sex difference exists at early stages of embryonic development in aromatase-containing neurones of the hypothalamus. The embryonic aromatase system is regulated later in foetal development by androgens. Testosterone treatment increases the numbers of aromatase-immunoreactive hypothalamic neuronal cell bodies. Kinetic evidence from studies on the avian brain suggest that endogenous steroid inhibitors of aromatase, probably formed within neuroglia, also have a role in the control of oestrogen production. Inhibitory kinetic constant determination of endogenous androgenic metabolites formed in the brain showed that preoptic aromatase is potently inhibited by 5-androstanedione (Ki = 6 nM) and less strongly by 5β-dihydrotestosterone (Ki = 350 nM). Regulation by steroidal and possibly non-steroidal inhibitors may contribute to the special characteristics and plasticity in aromatase activity which develops at certain stages in ontogeny.  相似文献   

19.
P.M. Vignais  P.V. Vignais 《BBA》1973,325(3):357-374

1. 1. Fuscin, a mould metabolite, is a colored quinonoid compound which reacts readily with −SH groups to give colorless addition derivatives.

2. 2. Binding of fuscin to mitochondria has been monitored spectrophotometrically. Fuscin binding is prevented by −SH reagents such as N-ehylmaleimide, N-Methylmaleimide, mersalyl or p-chloromercuribenzoate. Conversely, fuscin prevents the binding of −SH reagents as shown with N-[14C]ethylmaleimide. Once bound to mitochondria, fuscin is not removable by washing of mitochondria.

3. 3. High affinity-fuscin binding sites (Kd = 1 μM, N = 4–8 nmoles/mg protein) are present in whole mitochondria obtained from rat heart, rat liver, pigeon heart or yeast (Candida utilis). They are lost upon sonication but are still present in digitonin inner membrane + matrix vesicles. On the other hand, lysis of mitochondria by Triton X-100 does not increase the number of high affinity binding sites indicating that all these sites are accessible to fuscin in whole mitochondria. The number of fuscin high affinity sites appears to correlate with the glutathione content of mitochondrial preparations.

4. 4. Fuscin as well as N-ethylmaleimide and avenaciolide are penetrant SH-reagents;

5. 5. Fuscin interferes with the ADP-stimulated respiration of mitochondria on NAD-linked substrates, several functions of the mitochondrial respiratory apparatus being inhibited by fuscin in a non-competitive manner, but to various extents: (a) The electron transfer chain (Ki in the range of 0.1 mM); (b) the lipoamide dehydrogenase system (Ki = 5–10 μM); (c) the transport systems of phosphate (Ki ≈ 20 μM) and of glutamate (Ki = 3–5 μM); (d) the ADP transport, indirectly (Ki ≈ 10 μM).

6. 6. Like N-ethylmaleimide, fuscin inhibits the glutamate-OH carrier, the inhibition of that carrier bringing about an apparent increase of aspartate entry in glutamate-loaded mitochondria by the glutamate-aspartate carrier.

7. 7. The inhibition of phosphate transport by fuscin probably accounts for the inhibition of the reduction of endogenous NAD by succinate in intact pigeon heart mitochondria.

8. 8. By binding the −SH groups of mitochondrial membrane specifically unmasked by addition of micromolar amounts of ADP, fuscin, like N-ethylmaleimide, prevents the functioning of ADP translocation.

9. 9. Because of their specific and analogous effects on some well defined mitochondrial functions such as glutamate transport and ADP transport, fuscin and N-ethylmaleimide can be distinguished from other −SH reagents. The lipophilic nature of fuscin and N-ethylmaleimide which accounts for the accessbility of these compounds to hydrophobic sites in the mitochondrial membrane or on the matrix side of this membrane may be partly responsible for their characteristic inhibitory effects on mitochondrial functions.

Abbreviations: DTNB, 5,5′-dithio-bis-(2-nitrobenzoic acid); PCMB, p-chloromercuribenzoate  相似文献   


20.
M. Gutman  A. Schejter  Y. Avi-Dor 《BBA》1968,162(4):506-517
1. The membrane bound DPNH oxidase of Escherichia coli can reduce the artificial electron acceptors: ferricyanide, dichlorophenolindophenol (DCIP) and menadione. All three are reduced by the flavoprotein of DPNH oxidase, but at different sites of the enzyme.

2. Freeze-drying of the bacterial membranes causes a selective detachment of DPNH dehydrogenase (DPNH: (acceptor) oxidoreductase, EC 1.6.99.3) from the membranes. This solubilization is accompanied by a decrease of Km(K3Fe(CN)6) from 2.0 to 0.25 mM, while no change is detected in Km(DPNH). This enzyme is not the DPNH diaphorase found in the bacteria.

3. DPNH dehydrogenase of E. coli is a metalloflavoprotein, containing non-heme iron, labile sulfide, FMN and FAD.

4. Reduction of the enzyme with DPNH in the absence of electron acceptor (ferricyanide or DCIP) causes a rapid and irreversible change to a less active state, Form II. Form II is characterized by a higher Km(DPNH) and slower vmax., while the Km(K3Fe(CN)6) remains unchanged.

5. The transformation of the enzyme to Form II is accompanied by the reduction of the non-heme iron component. The role of non-heme iron in the enzymic reaction is discussed.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号