首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tiegang Fang  Tien Mun Foong 《Fuel》2009,88(11):2154-2162
An optically accessible single-cylinder high-speed direct-injection (HSDI) diesel engine was used to investigate the spray and combustion processes for biodiesel blends under different injection strategies. The experimental results indicated that the heat release rate was dominated by a premixed combustion pattern and the heat release rate peak became smaller with injection timing retardation. The ignition and heat release rate peak occurred later with increasing biodiesel content. Fuel impingement on the wall was observed for all test conditions. The liquid penetration became longer and the fuel impingement was stronger with the increase of biodiesel content. Early and late injection timings result in lower flame luminosity due to improved mixing with longer ignition delay. For all the injection timings, lower soot luminosity was seen for biodiesel blends than pure diesel fuel. Furthermore, NOx emissions were dramatically reduced for premixed combustion mode with retarded post-TDC injection strategies.  相似文献   

2.
In this paper, the air-fuel mixing and combustion in a small-bore direct injection optical diesel engine were studied for a retarded single injection strategy. The effects of injection pressure and timing were analyzed based on in-cylinder heat release analysis, liquid fuel and vapor fuel imaging by Laser induced exciplex fluorescence technique, and combustion process visualization. NOx emissions were measured in the exhaust pipe. Results show that increasing injection pressure benefits soot reduction while increases NOx emissions. Retarding injection timing leads to simultaneous reduction of soot and NOx emissions with premixed homogeneous charge compression ignition (HCCI) like combustion modes. The vapor distribution in the cylinder is relatively homogeneous, which confirms the observation of premixed combustion in the current studies. The postulated path of these combustion modes were analyzed and discussed on the equivalence ratio-temperature map.  相似文献   

3.
Seung Hyun Yoon 《Fuel》2011,90(10):3071-3077
This study was performed to investigate the effect of biogas-biodiesel fuel combustion on the emissions reduction and nanoparticle characteristics in a direct injection (DI) diesel engine. In order to apply the two biofuels, biogas was injected into a premixed chamber during the intake process by using two electronically controlled gas injectors, and biodiesel fuel was directly injected into combustion chamber by a high-pressure injection system. The in-cylinder pressure and rate of heat release (ROHR) were investigated under various fuel conditions for single-fuel (biodiesel) and dual-fuel (biogas-biodiesel) combustions. To evaluate the engine performances and exhaust emissions characteristics, the indicated mean effective pressure (IMEP) and exhaust emissions were also investigated under various test conditions. Furthermore, the particle number concentration and the size distribution of nanoparticles were analyzed by using a scanning mobility particle sizer (SMPS).In the case of dual-fuels, the peak combustion pressure and ROHR were gradually decreased with the increase of the biogas fraction in the dual-fuels. As the premixed ratios increased, ignition delay and combustion durations were prolonged compared to single-fuel mode. The dual-fuels combustion showed that the IMEP decreased slightly and maintained similar levels up to 20° BTDC due to the retarded combustion phase. The concentrations of NOx emissions were decreased for all injection timings as the premixed ratio (rp) increased. The soot emissions in dual-fuel operations were significantly lower than those in the single-fuel mode (rp = 0), and decreased gradually as the premixed ratio increased, regardless of injection timing. A lower nanoparticle size distribution was observed at all premixed ratios for dual-fuel combustion compared to those of the single fuel mode. The number distribution of both nuclei and accumulation modes also decreased with an increase in the biogas fraction. A slight reduction in the total particle number and total volume for all premixed ratios was observed as the injection timing increased from TDC up to 20° BTDC.  相似文献   

4.
Bai-Fu Lin  Dao-Yi Huang 《Fuel》2009,88(9):1779-1785
Vegetable oil methyl ester (VOME) is produced through the transesterification of vegetable oil and can be used as biodiesel in diesel engines as a renewable, nontoxic, and potentially environmentally friendly fossil fuel alternative in light of growing concerns regarding global warming and increasing oil prices. This study used VOME fuels produced from eight commonly seen oil bases to conduct a series of engine tests to investigate the effects of VOME on the engine performance, exhaust emissions, and combustion characteristics. The experimental results showed that using VOME in an unmodified direct injection (DI) diesel engine yielded a higher brake specific fuel consumption (BSFC) due to the VOME fuel’s lower calorific value. The high cetane number of VOME also imparted a better ignition quality and the high intrinsic oxygen content advanced the combustion process. The earlier start of combustion and the rapid combustion rate led to a drastic increase in the heat release rate (HRR) and the in-cylinder combustion pressure (ICCP) during the premixed combustion phase. A higher combustion rate resulted in higher peaks of HRR and ICCP as well as near the top dead center (TDC) position. Thus, it was found that a diesel engine fueled with VOME could potentially produce the same engine power as one fueled with petroleum diesel (PD), but with a reduction in the exhaust gas temperature (EGT), smoke and total hydrocarbon (THC) emissions, albeit with a slight increase in nitrogen oxides (NOx) emissions. In addition, the VOME which possesses shorter carbon chains, more saturated bonds, and a higher oxygen content also yields a lower EGT as well as reduced smoke, NOx, and THC emissions. However, this is obtained at the detriment of an increased BSFC.  相似文献   

5.
The effect of fuel constituents and exhaust gas recirculation (EGR) on combustion characteristics, fuel efficiency and emissions of a direct injection diesel engine fueled with diesel-dimethoxymethane (DMM) blends was investigated experimentally. Three diesel-DMM blended fuels containing 20%, 30% and 50% by volume fraction of DMM, corresponding to 8.5%, 12.7% and 21.1% by mass of oxygen in the blends, were used. By the use of DMM, it is observed that CO and smoke emissions as well as the total number and mass concentration of particulate reduce significantly, while HC emissions and particulate number with lower geometric mean diameters (Di < 0.039 μm) increase slightly. For each fuel, there is an increase of ignition delay whereas a decrease of cylinder pressure and heat release rate in the premixed combustion phase when the diesel engine was operated with EGR system. The brake thermal efficiency fluctuates at small EGR ratio, while decreases with the further increase of EGR ratio. With an increase of EGR ratio, NOx emission is reduced at the cost of increased smoke, HC and CO emissions as well as the total number and mass of particulates for each fuel.  相似文献   

6.
Su Han Park  Chang Sik Lee 《Fuel》2011,90(2):748-755
The aim of this work is to investigate the effect of ethanol blending to diesel fuel on the combustion and exhaust emission characteristics of a four-cylinder diesel engine with a common-rail injection system. The overall spray characteristics, such as the spray tip penetration and the spray cone angle, were studied with respect to the ethanol blending ratio. A spray visualization system and a four-cylinder diesel engine equipped with a combustion and emission analyzer were utilized so as to analyze the spray and exhaust emission characteristics of the ethanol blending diesel fuel. Ethanol blended diesel fuel has a shorter spray tip penetration when compared to pure diesel fuel. In addition, the spray cone angle of ethanol blended fuels is larger. It is believed that the lower fuel density of ethanol blended fuels affects the spray characteristics. When the ethanol blended fuels are injected around top dead center (TDC), they exhibit unstable ignition characteristics because the higher ethanol blending ratio causes a long ignition delay. An advance in the injection timing also induces an increase in the combustion pressure due to the sufficient premixed duration. In a four-cylinder diesel engine, an increase in the ethanol blending ratio leads to a decrease in NOx emissions due to the high heat of evaporation of ethanol fuel, however, CO and HC emissions increase. In addition, the CO and HC emissions exhibit a decreasing trend according to an increase in the engine load and an advance in the injection timing.  相似文献   

7.
A.P. Sathiyagnanam  C.G. Saravanan 《Fuel》2008,87(10-11):2281-2285
The objective of this investigation was to improve the performance of a diesel engine by adding oxygenated fuel additives of known percentages. The fuel additives di-methoxy-methane (DMM) and di-methoxy-propane (DMP) were separately blended with diesel fuel in proportions of 1 ml, 3 ml and 5 ml. The experimental study was carried out on a single cylinder DI diesel engine. The result showed an appreciable reduction of emissions such as smoke density, particulate matter and marginal increase in the performance when compared with normal diesel run. The same engine was employed with diesel particulate trap (DPT) in the exhaust pipe to study its influence on the emission analysis.  相似文献   

8.
The purpose of this study was to analyze the exhaust emissions of DME fuel through experimental and numerical analyses of in-cylinder spray behavior. To investigate this behavior, spray characteristics such as the spray tip penetration, spray cone angle, and spray targeting point were studied in a re-entrant cylinder shape under real combustion chamber conditions. The combustion performance and exhaust emissions of the DME-fueled diesel engine were calculated using KIVA-3V. The numerical results were validated with experimental results from a DME direct injection compression ignition engine with a single cylinder.The combustion pressure and IMEP have their peak values at an injection timing of around BTDC 30°, and the peak combustion temperature, exhaust emissions (soot, NOx), and ISFC had a lower value. The HC and CO emissions from DME fuel showed lower values and distributions in the range from BTDC 25° to BTDC 10° at which a major part of the injected DME spray was distributed into the piston bowl area. When the injection timing advanced to before BTDC 30°, the HC and CO emissions showed a rapid increase. When the equivalence ratio increased, the combustion pressure and peak combustion temperature decreased, and the peak IMEP was retarded from BTDC 25° to BTDC 20°. In addition, NOx emissions were largely decreased by the low combustion temperature, but the soot emissions increased slightly.  相似文献   

9.
P.K. Devan  N.V. Mahalakshmi 《Fuel》2009,88(5):861-867
Experimental tests have been carried out to evaluate the performance, emission and combustion characteristics of a diesel engine using Neat poon oil and its blends of 20%, 40%, and 60%, and standard diesel fuel separately. The common problems posed when using vegetable oil in a compression ignition engine are poor atomization; carbon deposits, ring sticking, etc. This is because of the high viscosity and low volatility of vegetable oil. When blended with diesel, poon oil presented lower viscosity, improved volatility, better combustion and less carbon deposit. It was found that there was a reduction in NOx emission for Neat poon oil and its diesel blends along with a marginal increase in HC and CO emissions. Brake thermal efficiency was slightly lower for Neat poon oil and its diesel blends. From the combustion analysis, it was found that poon oil-diesel blends performed better than Neat poon oil.  相似文献   

10.
《Fuel》2006,85(5-6):695-704
This work investigates partial HCCI (homogeneous charge compression ignition) combustion as a control mechanism for HCCI combustion. The premixed fuel is supplied via a port fuel injection system located in the intake port of DI diesel engine. Cooled EGR is introduced for the suppression of advanced autoignition of the premixed fuel. The premixed fuels used in this experiment are gasoline, diesel, and n-heptane. The results show that with diesel premixed fuel, a simultaneous decrease of NOx and soot can be obtained by increasing the premixed ratio. However, when the inlet charge is heated for the improved vaporization of diesel fuel, higher inlet temperature limits the operational range of HCCI combustion due to severe knocking and high NOx emission at high premixed ratios. Gasoline premixing shows the most significant effects in the reductions of NOx and soot emissions, compared to other kinds of premixed fuels.  相似文献   

11.
《Fuel》2007,86(12-13):1772-1780
In this study, wasted cooking oil from restaurants was used to produce neat (pure) biodiesel through transesterification, and this converted biodiesel was then used to prepare biodiesel/diesel blends. The goal of this study was to compare the trace formation from the exhaust tail gas of a diesel engine when operated using the different fuel type: neat biodiesel, biodiesel/diesel blends, and normal diesel fuels. B20 produced the lowest CO concentration for all engine speeds. B50 produced higher CO2 than other fuels for all engine speeds, except at 2000 rpm where B20 gave the highest. The biodiesel and biodiesel/diesel blend fuels produced higher NOx for various engine speeds as expected. SO2 formation not only showed an increasing trend with increased engine speed but also showed an increasing trend as the percentage of diesel increased in the fuels. Among the collected data, the PM concentrations from B100 engines were higher than from other fuelled engines for the tested engine speed and most biodiesel-contained fuels produced higher PM than the pure diesel fuel did. Overall, we may conclude that B20 and B50 are the optimum fuel blends. The species of trace formation in the biodiesel-contained fuelled engine exhaust were mainly CnH2n+2, DEP, and DPS. For the B100, B80, B50, and D fuelled engines, C15H32 was the dominant species for all engine speeds, while squalene (C30H50) was the dominant for B20. DEP was only observed in the B100, B80, and B50 fuelled engines in this study. The D fuelled engine showed a higher DPS production for engine speeds higher than 1200 rpm.  相似文献   

12.
Myung Yoon Kim  Chang Sik Lee   《Fuel》2007,86(17-18):2871-2880
The aim of this work was to investigate the effect of narrow fuel spray angle injection and dual injection strategy on the exhaust emissions of a common-rail diesel engine. To achieve successful homogeneous charge compression ignition by an early timing injection, a narrowed spray cone angle injector and a reduced compression ratio were employed. The combination of homogeneous charge compression ignition (HCCI) combustion and conventional diesel combustion was studied to examine the exhaust emission and combustion characteristics of the engine under various fuel injection parameters, such as injection timings of the first and second spray.The results showed that a dual injection strategy consisting of an early timing for the first injection for HCCI combustion and a late timing for the second injection was effective to reduce the NOx emissions while it suppress the deterioration of the combustion efficiency caused by the HCCI combustion.  相似文献   

13.
In this paper fuels, based on various DME to diesel ratios are investigated. Physical and chemical properties of DME and diesel display mutual solubility at any ratio. The vapor pressure of DME/diesel blends is lower than that of pure DME at the same temperatures and it decreases with an increase of diesel mass fraction in blends, which is beneficial to the elimination of vapor lock in the fuel supply system on CI engines. Performance, emission and other features of three kinds of DME/diesel blend fuels and diesels are evaluated in a four-cylinder test engine. By taking relative advantages of DME and diesel, the DME/diesel blends could achieve satisfactory properties in lubricity and atomization, which contributed to improvements in spray and combustion characteristics. Simultaneously, smoke emission could be reduced significantly with a little penalty on CO and HC emissions for DME/diesel blended engine at high loads, in comparison to diesel engine. NOx emissions of the engine powered by DME/diesel blends are decreased somewhat. Moreover, the power output would be improved a little and NOx emission could be reduced further if the fuel supply advance angle is retarded appropriately.  相似文献   

14.
Biodiesel blend effects on common-rail diesel combustion and emissions   总被引:2,自引:0,他引:2  
Marina Kousoulidou 《Fuel》2010,89(11):3442-3449
Biodiesel (fatty acid methylesters) blends with fossil diesel at a mixing ratio between 0.5 and 5 vol.% are widely offered as automotive fuels in Europe. The target for the future is to bring this ratio to at least 10%, in order to increase the share of renewable energy in transport. There is however limited evidence on the effects of such blends on the combustion and emissions of diesel engines not originally designed to operate on biodiesel blends. In this study, a number of experiments with 10 vol.% (B10) biodiesel fuel of palmoil origin were performed on a light-duty common-rail Euro 3 engine. The measurements included in-cylinder pressure, pollutants emissions, and fuel consumption. Combustion effects were limited but changes in the start of ignition and heat-release rate could be identified. Emission effects included both higher and lower smoke and NOx, depending on the operation point. The results on the engine bench were compared against a Euro 3 common-rail light-duty vehicle driven on the chassis dynamometer, in order to include the effects of emission control systems (EGR and oxidation catalyst). In addition to the palm biodiesel, an RME-diesel blend was also tested to examine the effects of a fuel with different characteristics. Both biodiesel blends reduced PM emissions and only marginal effects on NOx over the certification test could be identified. The results of this study show that up to 10% biodiesels could be used on current diesel vehicles, without significantly affecting vehicle emission performance.  相似文献   

15.
Lei Zhu  C.S. Cheung  W.G. Zhang 《Fuel》2011,90(5):1743-1750
In this study, Euro V diesel fuel, biodiesel, and ethanol-biodiesel blends (BE) were tested in a 4-cylinder direct-injection diesel engine to investigate the combustion, performance and emission characteristics of the engine under five engine loads at the maximum torque engine speed of 1800 rpm. The results indicate that when compared with biodiesel, the combustion characteristics of ethanol-biodiesel blends changed; the engine performance has improved slightly with 5% ethanol in biodiesel (BE5). In comparison with Euro V diesel fuel, the biodiesel and BE blends have higher brake thermal efficiency. On the whole, compared with Euro V diesel fuel, the BE blends could lead to reduction of both NOx and particulate emissions of the diesel engine. The effectiveness of NOx and particulate reductions increases with increasing ethanol in the blends. With high percentage of ethanol in the BE blends, the HC, CO emissions could increase. But the use of BE5 could reduce the HC and CO emissions as well.  相似文献   

16.
Mingfa Yao  Hu Wang  Zunqing Zheng  Yan Yue 《Fuel》2010,89(9):2191-2201
Experimental study was conducted to investigate the influence of the diesel fuel n-butanol content on the performance and emissions of a heavy duty direct injection diesel engine with multi-injection capability. At fixed engine speed and load, exhaust gas recirculation rates were adjusted to keep NOx emission at 2.0 g/kW h. Diesel fuels with different amounts (0%, 5%, 10% and 15% by volume) of n-butanol were used. The results show that the n-butanol addition can significantly improve soot and CO emissions at constant specific NOx emission without a serious impact on the break specific fuel consumption and NOx. The impacts of pilot and post injection on engine characteristics by using blended fuels are similar to that found by using pure diesel. Early pilot injection reduces soot emission, but results in a dramatic increase of CO. Post injection reduces soot and CO emissions effectively. Under each injection strategy, the increase of fuel n-butanol content leads to further reduction of soot. A triple-injection strategy with the highest n-butanol fraction used in this study offers the lowest soot emission.  相似文献   

17.
Jinwoo Lee 《Fuel》2011,90(5):1762-1770
An experimental study was carried out to investigate the combustion and emission of JP-8 and diesel fuel in an optically-accessible single-cylinder heavy duty diesel engine equipped with a high pressure common-rail injection system in order to evaluate the feasibility of JP-8 application in diesel engine. The basic spray characteristics, including spray tip penetration and spray angle, were investigated with macroscopic spray images obtained by the Mie-scattering method. The combustion and emission characteristics were analyzed on the basis of the results obtained from the spray experiments. Visualization by direct imaging was used to characterize the combustion process.It was found that JP-8 had a shorter spray tip penetration and wider spray angle than diesel fuel mainly due to the faster vaporization characteristic of JP-8. The peak heat release rate was higher and the premixed burn portion was larger with JP-8 due to its superior mixing rate through faster vaporization characteristics. Furthermore, ignition delay with JP-8 was longer than that with diesel fuel due to the lower cetane number of JP-8. In terms of emission, JP-8 showed a benefit in smoke reduction while it produced larger amounts of HC and NOx. Longer ignition delay and accelerated oxidation in the late stage of JP-8 combustion were verified by direct imaging.  相似文献   

18.
Aaron J. Reiter 《Fuel》2011,90(1):87-97
This study investigated the combustion and emissions characteristics of a compression-ignition engine using a dual-fuel approach with ammonia and diesel fuel. Ammonia can be regarded as a hydrogen carrier and used as a fuel, and its combustion does not produce carbon dioxide. In this study, ammonia vapor was introduced into the intake manifold and diesel fuel was injected into the cylinder to initiate combustion. The test engine was a four-cylinder, turbocharged diesel engine with slight modifications to the intake manifold for ammonia induction. An ammonia fueling system was developed, and various combinations of ammonia and diesel fuel were successfully tested. One scheme was to use different combinations of ammonia and diesel fuel to achieve a constant engine power. The other was to use a small quantity of diesel fuel and vary the amount of ammonia to achieve variable engine power. Under the constant engine power operation, in order to achieve favorable fuel efficiency, the preferred operation range was to use 40-60% energy provided by diesel fuel in conjunction with 60-40% energy supplied by ammonia. Exhaust carbon monoxide and hydrocarbon emissions using the dual-fuel approach were generally higher than those of using pure diesel fuel to achieve the same power output, while NOx emissions varied with different fueling combinations. NOx emissions could be reduced if ammonia accounted for less than 40% of the total fuel energy due to the lower combustion temperature resulting in lower thermal NOx. If ammonia accounted for the majority of the fuel energy, NOx emissions increased significantly due to the fuel-bound nitrogen. On the other hand, soot emissions could be reduced significantly if a significant amount of ammonia was used due to the lack of carbon present in the combination of fuels. Despite the overall high ammonia conversion efficiency (nearly 100%), exhaust ammonia emissions ranged from 1000 to 3000 ppmV and further after-treatment will be required due to health concerns. On the other hand, the variable engine power operation resulted in relatively poor fuel efficiency and high exhaust ammonia emissions due to the lack of diesel energy to initiate effective combustion of the lean ammonia-air mixture. The in-cylinder pressure history was also analyzed, and results indicated that ignition delay increased with increasing amounts of ammonia due to its high resistance to autoignition. The peak cylinder pressure also decreased because of the lower combustion temperature of ammonia. It is recommended that further combustion optimization using direct ammonia/diesel injection strategies be performed to increase the combustion efficiency and reduce exhaust ammonia emissions.  相似文献   

19.
Homogeneous charged compression ignition (HCCI) is a promising combustion concept able to provide very low NOx and PM diesel engine emissions while keeping good fuel economy. Since HCCI combustion is a kinetically controlled process, the availability of a kinetic reaction mechanism to simulate the oxidation (low and high temperature regimes) of a diesel fuel is necessary for the optimisation, control and design of HCCI engines. Motivated by the lack of information regarding reliable diesel fuel ignition values under real HCCI diesel engine conditions, a diesel fuel surrogate has been proposed in this work by merging n-heptane and toluene kinetic mechanisms. The surrogate composition has been selected by comparing modelled ignition delay angles with experimental ones obtained from a single cylinder DI diesel engine tests. Modelled ignition angle results are in agreement with the experimental ones, both results following the same trends when changing the engine operating conditions (engine load and speed, start of injection and EGR rate). The effect of EGR, which is one of the most promising techniques to control HCCI combustion, depends on the engine load. High EGR rates decrease the n-heptane/toluene mixture reactivity when increasing the engine load but the opposite effect has been observed for lower EGR rates. A chemical kinetic analysis has shown that the influence of toluene on the ignition time is significant only at low initial temperature. More delayed combustion processes have been found when toluene is added, the dehydrogenation of toluene by OH (termination reaction) being the main kinetic path involved during toluene oxidation.  相似文献   

20.
Depletion of fossils fuels and environmental degradation have prompted researchers throughout the world to search for a suitable alternative fuel for diesel engine. One such step is to utilize renewable fuels in diesel engines by partial or total replacement of diesel in dual fuel mode. In this study, acetylene gas has been considered as an alternative fuel for compression ignition engine, which has excellent combustion properties.Investigation has been carried out on a single cylinder, air cooled, direct injection (DI), compression ignition engine designed to develop the rated power output of 4.4 kW at 1500 rpm under variable load conditions, run on dual fuel mode with diesel as injected primary fuel and acetylene inducted as secondary gaseous fuel at various flow rates. Acetylene aspiration resulted in lower thermal efficiency. Smoke, HC and CO emissions reduced, when compared with baseline diesel operation. With acetylene induction, due to high combustion rates, NOx emission significantly increased. Peak pressure and maximum rate of pressure rise also increased in the dual fuel mode of operation due to higher flame speed. It is concluded that induction of acetylene can significantly reduce smoke, CO and HC emissions with a small penalty on efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号