首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The energy conversion efficiency (ECE) (η), current density (Jsc), open-circuit voltage (Voc), and fill factor (ff) of perovskite solar cells were studied by using the transmittance of a nanopatterned mesoporous TiO2 (mp-TiO2) thin-film layer. To improve the ECE of perovskite solar cells, a mp-TiO2 thin-film layer was prepared to be used as an electron transport layer (ETL) via the nanoimprinting method for nanopatterning, which was controlled by the aspect ratio. The nanopatterned mp-TiO2 thin-film layer had a uniform and well-designed structure, and the diameter of nanopatterning was 280 nm. The aspect ratio was controlled at the depths of 75, 97, 127, and 167 nm, and the perovskite solar cell was fabricated with different depths. The ECE of the perovskite solar cells with the nanopatterned mp-TiO2 thin-film layer was 14.50%, 15.30%, 15.83%, or 14.24%, which is higher than that of a non-nanopatterned mp-TiO2 thin-film layer (14.07%). The enhancement of ECE was attributed to the transmittance of the nanopatterned mp-TiO2 thin-film layer that is due to the improvement of the electron generation. As a result, better electron generation affected the electron density, and Jsc increased the Voc, and ff of perovskite solar cells.  相似文献   

2.
Surface texturing methods using an alkaline solution for monocrystalline Si (c-Si) solar cells have been widely accepted to improve cell performance. However, multicrystalline Si (mc-Si) cells are difficult to be texturized by alkaline etching, because the grains in the substrates are randomly oriented. In this study, we considered a HF/HNO 3/H 2O acid solution for texturing the mc-Si cells. The conversion efficiency of mc-Si solar cells textured with the solution (HF/HNO 3/H 2O = 30:1:2.5) has relatively high values. In our study, sufficient light confinement is achieved, which contributes to the improvement of both the short circuit current and the conversion efficiency of the acid textured cells. The optimal acid etching ratio HF:HNO 3:H 2O = 30:1:2.5 with etching time of 60 s and lowering 41.9 % of the R value can improve 111.8 % of the conversion efficiency (η) of the developed solar cell. More detailed information is used to measure the internal quantum efficiency (IQE) and the lifetime of minority carriers. Thus, the acid texturing approach is instrumental to achieve high efficiency in mass production using relatively low-cost mc-Si as the starting material with proper optimization of the fabrication steps.  相似文献   

3.
We designed a new type of sensitizer for dye-sensitized solar cells based on ZnO photoelectrode. Three five-coordinate transition metal complexes [2,6-(ArNCMe)2C5H3NMCl2·nCH3CN] (MZn, Cd, Hg) (named as Zn1, Cd1, Hg1), have been synthesized. In all complexes, the metal center is tridentately chelated by the ligand and further coordinated by two chlorine atoms, resulting in distorted trigonal bipyramidal geometry. The improvement in conversion efficiency of dye-sensitized solar cell was achieved by the complexes (M) and N719 co-sensitizing ZnO photoelectrode. In the tandem structure of M/N719/ZnO, the M forms a re-organization of energy level due to its single-crystal structure, which is advantageous to the electron injection and the hole recovery. The result demonstrates the M/N719 co-sensitized solar cell exhibited excellent photovoltaic performances with the short-circuit photocurrent density of 8.943 mA cm−2, the open-circuit photovoltage of 591 mV and the fill factor of 0.639 under standard global AM 1.5 solar irradiation conditions.  相似文献   

4.
In dye-sensitized solar cells (DSSCs), as the excited electrons from dye molecules are injected to the conduction band of semiconductor film through the acceptor moieties, the acceptor groups have significant influences on the photovoltaic properties of the dyes. In this paper, the effects of different acceptor groups (cyanoacetic acid and rhodanine-3-acetic acid) in two phenothiazine-triphenylamine dyes (PTZ-1 and PTZ-2) on the optical, electrochemical properties and photovoltaic performances were studied. In comparison with PTZ-2, the photovoltaic performance of PTZ-1 is significantly improved by replacing rhodanine-3-acetic acid to cyanoacetic acid. The conversion efficiency of solar cell based on the PTZ-1 is increased about 110%. The lower efficiency of solar cell based on PTZ-2 is mainly because the delocalization of the excited state is broken between the 4-oxo-2-thioxothiazolidine ring and the acetic acid, which affects the electron injection from PTZ-2 to the conduction band of TiO2.  相似文献   

5.
A. A. El-Amin 《SILICON》2017,9(3):385-393
In this paper, the Au/n-ZnO/p-Si/Al heterojunction for developing solar cells with high conversion efficiency and low cost were studied. The Au/n-ZnO/p-Si/Al HIT (heterojunction with intrinsic thin-layer) solar cells were analyzed and designed by AFORS-HET software. The characteristics of such cells with emitter intrinsic layer thickness and interface states density are discussed. The simulation results show that the key role of the intrinsic layer inserted between the ZnO and crystalline silicon substrate p-Si is to decrease the interface states density. If the interface states density is lower than 1010 cm?2.V?1, a thinner intrinsic layer is better than a thicker one. The increase of the thickness of the emitter will decrease the short-current density and affect the conversion efficiency. The effect of Surface Recombination Velocity (SRV) front and back on the J-V characteristics of the Au/n-ZnO/p-Si/Al heterojunction solar cell has been studied with this simulation. With the optimized parameters set, the Au/n-ZnO/p-Si/Al solar cell reaches a high efficiency (η) up to 21.849 % (FF: 0.834, Voc: 0.666 V, Jsc: 39.39 mA/cm2).  相似文献   

6.
Two new broad absorbing alternating copolymers, poly[1-(2,6-diisopropylphenyl)-2,5-bis(2-thienyl)pyrrole-alt-4,7-bis(3-octyl-2-thienyl)benzothiadiazole] (PTPTTBT-P1) and poly[1-(p-octylphenyl)-2,5-bis(2-thienyl)pyrrole-alt-4,7-bis(3-octyl-2-thienyl)benzothiadiazole] (PTPTTBT-P2), were prepared via Suzuki polycondensation with high yields. The two polymers were found to show characteristic absorption in the visible region of the solar spectrum. Interestingly the absorption of PTPTTBT-P1 was found to cover the visible region from 350 to 650 nm with the broad and flat absorption maximum from 440 to 510 nm in film and the absorption of PTPTTBT-P2 was found to cover the visible region from 350 to 950 nm with the relatively distinct absorption maxima at 425 and 522 nm and very weak absorption maximum at 832 nm in film. The electrochemical band gaps of the polymers were calculated to be 1.88 eV and 1.87 eV, respectively, while the optical band gaps of the polymers were calculated to be 1.94 eV and 1.87 eV, respectively. The photovoltaic properties of polymers were investigated with bulk heterojunction (BHJ) solar cells fabricated in ITO/PEDOT:PSS/polymer:PC70BM(1:5 wt%)/TiOx/Al configurations. The maximum power conversion efficiency (PCE) of the solar cell composed of PTPTTBT-P1:PC70BM as an active layer was 1.57% with current density (Jsc) of 8.17 mA/cm2, open circuit voltage (Voc) of 0.52 V and fill factor (FF) of 36%.  相似文献   

7.
The influence of the F/Cl atomic ratio on the morphology of titanium metal, deposited by electrorefining in various alkali halide solvent mixtures and K2TiF6 solute, was investigated. A continuous transition from powdery deposits in chloride mixtures (F/Cl = 0), through dendritic deposits in chloride-fluoride mixtures (0 < C/Cl < ), to coherent and adherent deposits in fluoride mixtures (F/Cl = ), was evidenced. This dependence was explained in terms of the increase of the thermodynamic stability of TiF6 3– anion (and the consequent decrease of the activity of Ti3+, i.e. electrocrystallization centres available in the melt), with increase of the parameter F/Cl. This is supported by the observed increase in the decomposition potential, E d, and the shift of the Ti3+ discharge potential, E p, toward more negative values, in the same sequence. The influence of the F/Cl atomic ratio on current efficiency, , on the grain size distribution and on the chemical purity of electrodeposited titanium metallic powder, was also discussed.List of symbols cd current density - E d decomposition potential - E p discharge potential - (E 1/2)c half wave potential of the complex - (E 1/2)f half wave potential of the free ion - current efficiency - d m average diameter - P m molar polarizing strength  相似文献   

8.
New donor/acceptor polymers PBDTTPT1 and PBDTTPT2 with alternating benzodithiophene (BDT) and bisthiophene-dioxopyrrolothiophene (TPT) units were synthesized by Stille coupling reaction. The polymers had optical bandgaps of 1.78 and 1.82 eV, and HOMO energy levels of −5.30 and −5.35 eV for PBDTTPT1 and PBDTTPT2, respectively. Polymeric solar cell devices based on these copolymers as donors and PC71BM as acceptor showed the highest open circuit voltage of 0.95 V and power conversion efficiency of 2.68% under the illumination of AM 1.5, 100 mW/cm2.  相似文献   

9.
Low-bandgap poly(2,7-carbazole) derivatives with variable N-substituent of ethyl (PEtCzBT), phenyl (PPhCzBT) and 4-diphenylaminophenyl (PTPACzBT) on the carbazoles, were synthesized through Suzuki coupling reaction. The polymers show excellent solubility in organic solvents (readily soluble in chloroform, THF and toluene etc.), good thermal stability (5% weight loss temperature of more than 417 °C), and electrochemical properties (reversible redox process with narrow bandgap), and deep HOMO energy levels (∼5.1 eV), allowing them promising candidates in the solar cell fabrication. Bulk-heterojunction solar cells with these polymers as electron donor and (6,6)-phenyl-C71-butyric acid methyl ester (PC71BM) as electron acceptor exhibit high Voc (0.91-0.95 V) and good power conversion efficiency (PCE) of 1.69% for PEtCzTB, 2.01% for PPhCzTB, and 2.42% for PTPACzTB.  相似文献   

10.
Three near-infrared (NIR) absorbing unsymmetrical perylene diimide D-A-D type dyes containing 6-undecanoxy as donor group were utilized in dye-sensitized nanocrystalline TiO2 solar cells. Structure of the acceptor side of the molecules were improved by adding 4-[2-methyl-5-(cyanoacrylic acid)-3-thienyl]-phenyl (V), 3-carboxy-2-pyridil (VI) and 3-carboxy-2-pyrazyl (VII) moieties attached to one of the N-side of the dye. The relationship between the molecular structure of the acceptor sites of the dyes and the photovoltaic performances were discussed. Electrochemical measurements indicated that band gaps of the dyes were energetically favorable for electron injection from the excited state of the dyes to the conduction band of TiO2 nanoparticles. However, three dyes gave lower conversion efficiency on DSSC applications. Strong electron-withdrawing nature of perylene core might not permit to transfer the photo-generated electrons to the carboxyl groups anchoring to TiO2 surface, and then solar-to-electricity conversion efficiencies of the dyes were reduced.  相似文献   

11.
In this paper, a zinc oxide (ZnO) nanotube, fabricated by the hydrothermal growth method on triple-junction (T-J) solar cell devices to enhance efficiency, is investigated. Compared to those of bare T-J solar cells (without antireflection (AR) coating) and solar cells with Si3N4 AR coatings, the experimental results show that the T-J solar cells, which use a ZnO nanotube as an AR coating, have the lowest reflectance in the short wavelength spectrum. The ZnO nanotube has the lowest light reflection among all experimental samples, especially in the range of 350 to 500 nm from ultraviolet (UV) to visible light. It was found that a ZnO nanotube can enhance the conversion efficiency by 4.9%, compared with a conventional T-J solar cell. The Si3N4 AR coatings also enhance the conversion efficiency by 3.2%.The results show that a cell with ZnO nanotube coating could greatly improve solar cell performances.  相似文献   

12.
The G0 and G1 polyurethane dendrimers terminated with 3–12 atom transfer radical polymerization (ATRP) initiators were prepared using single and dual functional ATRP reagents and their structures were confirmed using FT-IR, 1H–NMR, HR-MS and SEC-MALLS techniques. 4-Vinylpyridine was polymerized using the G1 dendritic initiators to obtain six- and twelve-arm star poly(4-vinylpyridine)s (STAR-P1 and STAR-P2). The absolute molecular weight and PDI of star polymers were in the order of 105 and 1.23–1.24 respectively. Hydrolysis leading to degradation of inner polyurethane core of the star polymers yielded more narrow dispersed poly(4-vinylpyridine) chains and the SEC-MALLS data of these chains confirm the accurate control on number of arms. Both of the polymers were doped with KI/I2 along with N3-dye to work as efficient polymer electrolytes for dye sensitized solar cell (DSSC). The increment in the conductivity of doped STAR-P1 was very significant and reached 2.415 mS/m from 0.0066 mS/m of dopant salt. The current-voltage characteristics of these doped polymer electrolytes measured under simulated sun light with AM 1.5 at 40 mW/cm2 yielded energy conversion efficiency (η) of 5.13% and 1.90% for STAR-P1 and STAR-P2 respectively and these values also significantly high compared to 1.09% corresponds to current-voltage curve of the device fabricated without the polymers.
Graphical abstract Star poly(4-vinylpyridine)s were prepared using novel dendritic ATRP initiators and used as electrolytes for dye sensitized solar cell (DSSC); one of the cells showed 5.13% energy conversion efficiency.
  相似文献   

13.
A donor–acceptor double‐cable polythiophene derivative ( PT‐F1 ) with side chain containing C60 end group was synthesized, and characterized by infrared, UV‐vis absorption and photoluminescence (PL) spectroscopy, and electrochemical cyclic voltammetry. Cyclic voltammogram of PT‐F1 shows the oxidation peak of the polymer main chains and the reduction peaks of the C60 end groups, indicating that there is no interaction between the polymer main chains and side chain C60 groups on the ground state. The UV‐vis absorption spectrum of PT‐F1 film is red‐shifted in comparison with that of its chloroform solution. The PL spectrum of the polymer main chain was quenched by the C60 pendant on the side chain. Polymer solar cell with the structure of ITO/PEDOT:PSS/ PT‐F1 /Ca/Al was fabricated. The power conversion efficiency of the device based on PT‐F1 reached 0.274% under the illumination of AM 1.5, 100 mW/cm2. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
A nanospheroidal TiO2 mesoporous layer combined with cadmium sulfide (CdS) quantum dots (QDs) as a sensitizer was firstly utilized for solar cell applications, resulting in an efficiency of 1.2% at a 1 sun condition. CdS quantum dots (18 nm) were attached to the TiO2 nanospheroidal electrode by using a chemical bath deposition technique. The influence of surface treatment using dimethyl formamide on the interconnectivity of the TiO2 nanospheroidal electrodes was investigated. The charge transport of TiO2/CdS QDs/electrolyte sandwich-type cells was characterized by electrochemical impedance spectroscopy and the device performance was compared with conventional nanospherical TiO2 (Degauusa P25) electrodes. The electrodes with nanospheroidal morphology showed better device performance than the P25 nanoparticle electrodes primarily due to both better connectivity among nanospheroidal TiO2 particles and larger mesopores, resulting in deeper penetration of the electrolyte in QD-sensitized solar cells.  相似文献   

15.
Three triarylamine organic dyes (XS28-30) containing a cyclopentadithiophene unit as the conjugated bridge have been designed and synthesized for a potential application in dye-sensitized solar cells (DSSCs). Their absorption spectra, electrochemical and photovoltaic properties have been investigated. The incorporation of ethyl-substituted cyclopentadithiophene is highly beneficial to light-harvesting and preventing close π-π aggregation, thus favorably generating high efficiency. For a typical device, a solar energy conversion efficiency (η) of 5.8% based on XS29 was achieved under simulated AM 1.5 solar irradiation (100 mW cm−2) with a short-circuit photocurrent density (JSC) of 14.4 mA cm−2, an open-circuit voltage (VOC) of 601 mV, and a fill factor (ff) of 0.68. These results suggest that the functionalized cyclopentadithiophene unit is a promising candidate for DSSCs.  相似文献   

16.
Laju Bu  Fosong Wang 《Polymer》2011,52(19):4253-4260
A series of novel donor-acceptor (D-A) liquid crystalline conjugated cooligomers, i.e. F3T4-epP, F4T6-epP and F5T8-epP, which comprise oligo(fluorene-alt-bithiophene)s (OFbTs) with the different lengths as the donor segments and a perylene diimide (PDI) derivative as the acceptor segment, were designed and synthesized. The cooligomers can form the films with the desired ideal morphology for bulk heterojunction (BHJ) polymer solar cells (PSCs). That means the films comprise ordered alternating D-A lamellae perpendicular to the substrates. Most importantly, the periods of the nanostructures can be tuned by varying molecular length and post-treatment condition. For F3T4-epP and F4T6-epP, the periods are close to the single and double molecular lengths upon thermal and solvent vapor annealing, respectively. However, only the nanostructures with the period close to the single molecular length were formed for F5T8-epP for both annealing processes. Solar cells based on above nanostructured films were fabricated to demonstrate the advantages of the ideal morphology for BHJ solar cells. It was found that the power conversion efficiency (PCE) of the devices was dependent on the molecular length and the order of the films. Solvent vapor annealed films exhibited the highest order therefore gave the best device performance. A PCE of 1.75% was demonstrated with the solvent vapor annealed films of F5T8-epP. This performance represents the best among the solar cells based on the single molecular materials.  相似文献   

17.
Parameters which affect the electrosynthesis of 4,4-dinitroazobenzene from p-nitroaniline on platinum and PbO2 electrodes were investigated and optimum conditions were determined. Maximum conversion efficiency for electrosynthesis was 95% with a pure -PbO2 electrode. It was found that the electrocatalytic activity of a PbO2 electrode depends upon its / ratio and its degree of crystallinity. The effects of the added base and water on the conversion efficiency were also elucidated.  相似文献   

18.
Recent studies revealed that the activation of serotonergic 5-HT1A and muscarinic M1, M4, or M5 receptors prevent MK-801-induced cognitive impairments in animal models. In the present study, the effectiveness of the simultaneous activation of 5-HT1A and muscarinic receptors at preventing MK-801-induced cognitive deficits in novel object recognition (NOR) or Y-maze tests was investigated. Activators of 5-HT1A (F15599), M1 (VU0357017), M4 (VU0152100), or M5 (VU0238429) receptors administered at top doses for seven days reversed MK-801-induced deficits in the NOR test, similar to the simultaneous administration of subeffective doses of F15599 (0.05 mg/kg) with VU0357017 (0.15 mg/kg), VU0152100 (0.05 mg/kg), or VU0238429 (1 mg/kg). The compounds did not prevent the MK-801-induced impairment when administered acutely. Their activity was less evident in the Y-maze. Pharmacokinetic studies revealed high brain penetration of F15599 (brain/plasma ratio 620%), which was detected in the frontal cortex (FC) up to 2 h after administration. Decreases in the brain penetration properties of the compounds were observed after acute administration of the combinations, which might have influenced behavioral responses. This negative effect on brain penetration was not observed when the compounds were administered repeatedly. Based on our results, prolonged administration of a 5-HT1A activator with muscarinic receptor ligands may be effective at reversing cognitive decline related to schizophrenia, and the FC may play a critical role in this interaction.  相似文献   

19.
We suggest a simple process to fabricate a hole-patterned TiO2 electrode for a solid-state dye-sensitized solar cell (DSSC) to enhance cell performance through interfacial properties of the electrode with the electrolyte with minimum dye loading. The method involves prepatterning of SU-8 photoresist on a conducting glass, followed by the deposition of a nanocrystalline TiO2 layer, calcination at 450 °C and characterization using scanning electron microscopy (SEM). Hole-patterned TiO2 photoelectrodes yielded better solar energy conversion efficiency per dye loading compared to a conventional non-patterned photoelectrode. For example, a 50 μm hole-patterned DSSC exhibited 4.50% conversion efficiency in the solid state, which is comparable to an unpatterned flat TiO2 photoelectrode (4.57%) however the efficiency per dye loading of the former (0.986%/g) was much greater than that of the latter (0.898%/g). The improvement was attributed to improved transmittance through the electrode as well as better interfacial properties between the electrolyte and electrode, as confirmed by UV-visible spectroscopy and electrochemical impedance (EIS) analysis.  相似文献   

20.
In this study we used Suzuki cross-coupling to synthesize three new donor/acceptor copolymers—PFTBO, PAFTBO, and PCTBO—featuring soluble alkoxy-modified 2,1,3-benzooxadiazole (BO) moieties as acceptor units and electron-rich building blocks—dialkyl fluorene (F), alkylidene fluorene (AF), and carbazole (C), respectively—as donor units. These polymers, which we characterized using gel permeation chromatography, thermogravimetric analysis, NMR spectroscopy, UV–Vis absorption spectroscopy, and electrochemical cyclic voltammetry, exhibited good solubility, low-lying energy levels for their highest occupied molecular orbitals, excellent thermal stability, and air stability. Using these polymers, we fabricated bulk-heterojunction solar cell devices having the structure indium tin oxide/poly(3,4-ethylenedioxythiophene):polystyrenesulfonate/polymer:[6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) (1:1, w/w)/Ca/Al. Under AM 1.5G illumination (100 mW cm?2), the solar cell incorporating PFTBO exhibited a high value of Voc of 1.04 V and that based on PCTBO provided a power conversion efficiency of 4.1% without the need for any post treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号