首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Overhead ground wires and surge arresters have been installed to protect high-voltage power distribution lines and apparatus from overvoltages induced by nearby lightning strokes. The effects of surge arresters for protection of high-voltage distribution lines against direct lightning strokes have already been investigated using the digital simulation program EMTP (Electromagnetic Transients Program). With regard to the protection of low-voltage distribution lines from overvoltages induced by lightning strokes, experimental analyses using a scale model line have been reported. This paper reports on the comparison between the experimental analyses and EMTP simulation of power distribution lines, including low-voltage lines, and the validity of EMTP simulation. Furthermore, this paper analyzes the overvoltages on low-voltage power distribution lines against direct lightning strokes to overhead ground wire using the digital simulation.  相似文献   

2.
The primary aim of surge arresters in power distribution lines is to protect lines and equipment from the voltage induced by nearby lightning strokes. To further improve power systems, methods to protect distribution lines against direct lightning strokes are still needed. An effective measure against direct lightning strokes is to increase the number of arresters. However, if the surge current is too large, some surge arresters absorb energy in excess of their capability and may break; this leads to a line fault. To evaluate the protective effect of the surge arresters against direct lightning strokes to overhead ground wire, the authors measured both the voltage across the surge arresters and the energy absorbed by them using a full-scale model line and a 12 MV impulse generator. The results were compared with simulation results by EMTP. There have been no previous studies making a comparison of this kind.  相似文献   

3.
Lightning voltage induced by nearby strokes is one of the causes of major overvoltages which threaten the insulation of power distribution lines. Surge arresters as well as an overhead ground wire usually are employed for the protection of equipment and line insulation on overhead power distribution lines. The fundamental mechanism of suppressing effects of overvoltages induced by nearby strokes has been demonstrated independently by one of the present authors for surge arresters and for an overhead ground wire. In this paper, the protective effect of the combination of surge arresters and overhead ground wire is analyzed. As a result, it is found that the effect of surge arresters used together with an overhead ground wire is almost the same as that of surge arresters alone.  相似文献   

4.
Application of metal oxide surge arresters in power systems has been traditionally linked to electrical equipment protection. The industry has noted a very significant increase in the application of metal oxide arresters on transmission lines in an effort to reduce lightning initiated flashovers. This paper describes a cost-effective installation of surge arresters on a partially shielded transmission line. It compares several options with respect to cost and gains in terms of lightning performance improvement. This paper also presents a new approach to calculate risk of failure of transmission line surge arresters (TLSAs) due to lightning strokes to towers, shield/phase conductors, and illustrates the method with an example for a partially shielded line. Results show that the risk of failure is very small. The installation of TLSAs completed in 1997 demonstrated that it is possible to afford adequate lightning protection levels by selectively applying surge arresters only to the towers most sensitive to backflashover and shielding failures  相似文献   

5.
应用ATP-EMTP对配网架空线路雷电感应过电压下,线路避雷器的保护效果进行了仿真计算研究。仿真计算结果表明,安装线路避雷器可以对配网架空线路雷电感应过电压进行防护,其保护效果与避雷器的配置方式及线路杆塔接地电阻有关,降低杆塔接地电阻可以减小线路避雷器的安装密度。  相似文献   

6.
首先通过仿真得出35 k V线路杆塔以三相或两边相同时安装线路避雷器防雷效果最佳。再通过易击杆塔及附近杆塔避雷器不同的安装位置对杆塔的耐雷水平和导线中雷电冲击过电压的影响,最终得出安装线路避雷器仅能提高安装杆塔的耐雷水平,对相邻杆塔无外延保护,在易击杆塔附近连续安装线路避雷器对于提高易击杆塔的耐雷水平和降低导线中雷电冲击过电压的峰值要比间断安装时效果好。  相似文献   

7.
There are two major protective methods against lightning outages on overhead distribution lines. One is by use of surge arresters and the other is by an overhead ground wire. Surge arresters have rather constant effect regardless of the type of lightning outage causes. On the other hand, the effect of an overhead ground wire is quite different against the two major causes: direct lightning hit and induced overvoltages. This paper shows how to design lightning protection for overhead power distribution lines taking these characteristics into account. Copyright © 2007 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

8.
层次分析法在输电线路综合防雷措施评估中的应用   总被引:17,自引:4,他引:13  
基于层次分析法(Analytic Hierarchy Process,AHP)的基本原理,建立了一个用于评估输电线路防雷措施的层次分析结构模型,以某220kv实际线路为例对各种措施进行综合评估和计算,得到了该线路防雷改造方案的优先次序:降低接地电阻、架设耦合地线、增加避雷线根数、安装线路型避雷器、增加两片绝缘子.  相似文献   

9.
为评估在地线上安装水平侧向短针对输电线路的绕击保护效果,提出并建立了三维的电气几何模型(EGM)来计算水平侧向短针对导线的保护距离,总结了其安装和使用的规律。对110~500kV典型杆塔的计算结果表明:水平侧向短针具有一定的保护作用,但每根水平侧向短针的保护距离有限,其防绕击效果较依赖于安装数量;并且水平侧向短针对导线的保护距离受到导地线相对位置的较大影响,仅对部分保护角和塔头尺寸都较小的单回线路有效;而对于同塔多回输电线路,水平侧向短针无法起到实质上的防雷保护作用;此外,安装水平侧向短针后还会对地线的机械性能产生负面影响。因此可以认为,水平侧向短针的绕击保护效果有限,适用范围较窄,限制了它在输电线路防雷保护中的应用,该防雷措施还有待进一步的提高与完善。  相似文献   

10.
In measurements of rocket-triggered lightning current and voltage performed between 1986 and 1995 on the mountain top of Okushishiku in the Kanazawa area, the authors succeeded in artificially inducing winter lightning to arresters. Using the data obtained from those measurements, we analyzed the energy absorption characteristics of surge arresters, such as are installed on every transmission line tower for three phrases, by EMTP. The energy withstand capability of an individual arrester was verified to be approximately the same as the expected value. The analysis results for the energy share of each arrester connected in parallel showed that the usual light duty arresters installed on every tower have the possibility to be able to absorb extreme winter lightning energy even if the lightning hits the power line directly. © 1998 Scripta Technica. Electr Eng Jpn, 122(4): 25–33, 1998  相似文献   

11.
研究了延安供电公司配电网易受雷击架空输电线路防雷改造方案。通过加装线路避雷器前后耐雷水平计算和EMTP仿真研究,论证了延安地区配电网架空输电线路隔1塔装1组避雷器方案的防雷效果,证明该方案在10kv线路上的应用效果良好,而在35kV线路上的应用效果不佳。  相似文献   

12.
In order to clarify the cause of lightning outages of a distribution line, simultaneous observation of lightning discharge channels and types of damage on distribution lines were carried out with still cameras from July 1993 through July 1995. High-voltage lines located in the observation area did not suffer from induced voltages due to indirect lightning strikes, even if such lightning strikes were nearby. One instance of a direct lightning strike on a distribution line was observed. The striking point was the span center of the overhead ground wire, and only a transformer fuse was blown on the high-voltage line. Damage to surge arresters was observed in the case of a lightning strike on a building located near a distribution line. The cause is thought to have been lightning current which flowed into the nearby distribution line through the damaged arresters. © 1997 Scripta Technica, Inc. Electr Eng Jpn 119(1): 17–23, 1997  相似文献   

13.
Problems have often been caused in low-voltage distribution lines such as single-phase 100/200 V and three-phase 200-V systems. For instance, the burning of low-voltage devices and the unnecessary operation of ground fault interrupters have occurred, which are caused possibly by lightning overvoltages. Experimental analysis was performed on the generation modes of lightning overvoltages on low-voltage distribution lines. A scale model line, one-fourth the size of an actual power distribution line of Tokyo Electric Power Company (TEPCO), was installed for experimental analysis on the lightning protection of an overhead ground wire, an overhead common grounding wire (system neutral conductor), surge arresters and pole transformers against the overvoltages induced on low-voltage distribution lines due to a nearby lightning stroke. A balloon was flown at a location 30 km away from the scale model line in a normal direction to it. A 200-m long wire is suspended from the balloon to simulate a lightning path. Pulse current is applied to the simulated path using a pulse generator and the voltages induced on the line conductors are measured. This paper analyzes those overvoltages by means of the experimental and the theoretical methods.  相似文献   

14.
Transmission line arresters may be subjected to high energy stresses caused by lightning. Calculations of energy stresses were carried out for a typical line arrester installation. Three line configurations with different degrees of shielding efficiency were used for the study. The primary statistical parameter was the charge of the flash, including multiple strokes. The effect of stroke current magnitude was also investigated. The calculated results were compared with energy stresses in standardized tests on surge arresters  相似文献   

15.
35kV输电线路避雷器的雷电放电电流和吸收能量   总被引:1,自引:3,他引:1  
张媛媛  郑浩  施荣  王倩  屠幼萍 《高压电器》2007,43(2):118-121
在建立输电线路防雷计算模型的基础上,用电磁暂态计算程序对有、无避雷线的35 kV输电线路避雷器的雷电放电电流和吸收的雷电放电能量进行了计算。具体计算了不同幅值的雷电流作用下,不同冲击接地电阻时,线路上避雷器的放电电流和吸收的比能量,讨论了雷电流、接地电阻对放电电流和比能量的影响,并对分别装在有、无避雷线的输电线路上的避雷器的放电电流和比能量进行了纵向比较分析。  相似文献   

16.
根据输电线路雷电过电压仿真计算模型,对影响输电线路耐雷水平因素进行仿真计算与分析,证明现有常规的防雷保护措施仍然实用有效。应根据现场实际,进行仔细地规划,因地制宜地选择适合的防雷保护措施,是可以起到应有的保护效果。  相似文献   

17.
外串间隙线路型避雷器在架空输电线路中的防雷作用   总被引:1,自引:0,他引:1  
陈广生 《广东电力》2006,19(10):61-63
针对阳江地区输电线路存在遭受严重雷击跳闸的问题,分析了各种雷击过电压引起的线路闪络跳闸,介绍了外串间隙线路型避雷器在输电线路中间防雷的机理,指出在阳江电网中应用外串间隙线路型避雷器解决架空输电线路中间防雷的必要性及避雷器的安装选点原则,可供同行参考。  相似文献   

18.
500 kV昌房紧凑型线路采用线路避雷器后,能较大地提高线路的耐雷水平。紧凑型线路避雷器本体的荷电率取0.9,完全能承受雷击杆塔时的放电电流和放电能量。  相似文献   

19.
The use of transmission line surge arresters to improve the lightning performance of transmission lines is becoming more common. Especially in areas with high soil resistivity and ground flash density, surge arresters constitute the most effective protection mean. In this paper a methodology for assessing the surge arrester failure rate based on the electrogeometrical model is presented. Critical currents that exceed arresters rated energy stress were estimated by the use of a simulation tool. The methodology is applied on operating Hellenic transmission lines of 150 kV. Several case studies are analyzed by installing surge arresters on different intervals, in relation to the region's tower footing resistance and the ground flash density. The obtained results are compared with real records of outage rate showing the effectiveness of the surge arresters in the reduction of the recorded failure rate. The presented methodology can be proved valuable to the studies of electric power systems designers intending in a more effective lightning protection, reducing the operational costs and providing continuity of service.  相似文献   

20.
雷击是危及输电线路安全可靠运行的主要因素,深入研究输电线路的耐雷水平对保证电力系统的安全可靠运行具有重要的工程意义。介绍了输电线路的雷击类型,分别分析了杆塔接地电阻、线路档距、杆塔高度、导线电压、杆塔波阻抗对输电线路耐雷水平的影响,阐述了输电线路常用的防雷措施:架设避雷线、降低杆塔接地电阻、增设耦合地线、提高绝缘等级,为输电线路耐雷水平的深入研究打下基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号