首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Delay tolerant networks (DTNs) are a newest class of networks that have the ability to provide connectivity to areas that are yet to be served by conventional networks. Routing in DTN is a tough task because nodes have no prior information about the partitioned network and transfer opportunities between peer nodes are limited. A node in a DTN delivers messages to the destination using the store and forward strategy. Messages are transmitted to multiple intermediate relay nodes encountered in order to increase the opportunity for the message to reach the destination. Encounter duration is the time period in which a pair or more mobile nodes move into the communication range of each other and hence are able to transfer messages between them. Since the node movements are arbitrary, the encounter duration is unpredictable. This research work proposes a novel encounter based fuzzy logic routing (EFLR) scheme to maximize message delivery with reduced overhead. The fuzzy based utility computation is used for finding a better node to forward messages as well as to drop messages from buffer. Simulation results reveal that EFLR performs better than other existing DTN routing protocols.

  相似文献   

2.
The routing algorithms of DTN have the inbuilt storage management scheme such as Hop based TTL (Spray and Wait) or passive cure (Potential-based Entropy Adaptive Routing PEAR). There has been a significant amount of work in the past regarding buffer management policies. In this paper, we have proposed a new message deletion policy for multi-copy routing schemes. In this scheme, message delivery information is communicated to the other nodes in the network for removing useless bundles from the network, which prevents the nodes from the buffer overflow problem and avoid transfer of useless message replicas thus relaxing the resources of the nodes. We evaluate our proposed method by simulating network, on four major DTNs routing algorithms: Epidemic, Spray and Wait, ProPHET and MaxProp. The simulation results clearly show significant improvement in the value of delivery probability and the overhead ratio for an Epidemic, Spray and Wait, and Prophet routing protocols.  相似文献   

3.
Vehicular networks are popular in recent years to provide low cost communication medium during mobility. Vehicular Delay Tolerant Networks (DTNs) are one of the major categories of emerging technology. DTNs work on carry and forward mechanism to deliver data to the destination. The network performance gets severely affected due to reluctance shown by selfish nodes where few nodes show no interest in forwarding others data due to lack of any personal profit. The proposed mechanism is based on coalition game theory and discusses about incentive based mechanism which provides incentive to nodes which are forwarding data to forward to destination and motivates other vehicles in the network to participate in coalition to forward data. This scheme not only encourages other selfish nodes to forward their private data and other nodes’ public data as early as possible to destination but also increases reliability in the network as more nodes show their interest in selected routing protocol. The proposed scheme outperforms in overall benefit earned by individual node and whole coalition, and increases mutual cooperation which improves availability of data in the network.  相似文献   

4.
In this paper, we study the case of a limited number of mobile nodes trying to communicate in a large geographic area, forming a delay/disruption tolerant network (DTN). In such networks the mobile nodes are disconnected for significantly long periods of time. Traditional routing protocols proposed for mobile ad hoc networks or mesh networks, which assume at least one path between each source and destination, are ineffective in DTNs. One approach to improve communication is through gossip based protocols because these protocols do not rely on a fixed path. Another approach is to control the movement of the mobile nodes and/or use special mobile nodes called ferry nodes. Others try to employ a fixed infrastructure including stationary relay points. One scheme in stationary relay point approach is to use base stations as relay points which need their own power supply. In this paper, we study a passive approach where mobile nodes deposit/retrieve messages to/ from known stationary locations in the geographic region. Messages are delivered from a source by being deposited at one or more locations that are later visited by the destination. A proposed implementation of our approach using read/writable passive Radio Frequency Identification (RFID) tags, one per point location, is considered in this work. Passive RFID technology is desirable because it operates wirelessly and without the need for attached power. Our simulation results indicate that our approach can achieve competitive message delay and delivery rates. We also demonstrate several techniques for optimizing the stationary relay node placement, namely relay pruning, probability based relay distribution and a genetic algorithm; the genetic algorithm is shown to provide the best solutions to this problem.  相似文献   

5.
In Delay Tolerant Networks (DTNs), mobile nodes exploit encounter chances to transmit data via the established opportunistic link between encounter nodes. The transmission capacity between two encounter nodes is constrained by the duration of opportunistic links. How to transmit data efficiently is one of the fundamental and most important issues in DTNs. Recently, Random Linear Network Coding (RLNC) is proposed as a promising approach to improve data transmission efficiency in DTNs. To facilitate the development of deployment of RLNC based routing protocols, it is imperative to quantify the performance gain brought by RLNC in a rigorous and systematic way. In this paper, we develop an analytical model to evaluate the data transmission performance of RLNC based epidemic routing in DTNs. In the model, we consider that multiple unicast communication sessions compete for limited \capacity. Numerical results validate the effectiveness of our analytical model and demonstrate the significant performance improvement for data transmission in DTNs brought by RLNC. Our work of this paper provides a general tool for performance evaluation and useful guidelines for designing RLNC based routing protocols in DTNs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Delay Tolerant Networks (DTNs) provide a communications infrastructure for environments lacking continuous connectivity. Such networks rely on the mobility of nodes and the resulting opportunistic connections to carry messages from source to destination. Unfortunately, exchanging packets with an arbitrary intermediary node makes privacy difficult to achieve in these systems as any adversary can easily act as an intermediary and determine the sender and receiver of a message. In this paper, we present ARDEN, an anonymous communication mechanism for DTNs based on a modified onion routing architecture. Instead of selecting specific nodes through which messages must pass as is traditionally done in onion routing, ARDEN uses Attribute-Based Encryption (ABE) to specify and manage groups that may decrypt and forward messages. Through simulation, we show that this approach not only increases throughput and reduces end-to-end latency over traditional onion routing techniques, but also adds minimal overhead when compared to DTN routing protocols that do not provide anonymity guarantees. Through this, we show that ARDEN is an effective solution for anonymous communication in intermittently connected networks such as DTNs.  相似文献   

7.
Dynamic DTN Routing Strategies Based on Knowledge   总被引:1,自引:0,他引:1  
This paper presents a novel based-knowledge dynamic routing model with rate allocation for delay-tolerant networks (DTNs). The objectives are how to embody knowledge about destination offered by joint nodes and how to apply knowledge about destination to transfer data when the instantaneous end-to-end paths do not exist in DTNs. The first problem is addressed through a rate allocation model. For rate allocation, taking into account the dynamic feature of rate control as well as the selfish nature of joint nodes, we design a non-cooperative differential game model to offer efficient rate allocation scheme with the constraint of limited bandwidth, and obtain a feedback Nash equilibrium solution of the game. In this study, knowledge is valued information and provides advisable solutions to problems. For the second problem, assuming that the obtained value function in rate allocation model is the available knowledge about destination of joint node; with this assumption, a polynomial time routing algorithm is proposed to describe the procedure of the routing model.  相似文献   

8.
Owing to the uncertainty of transmission opportunities between mobile nodes, the routing in delay tolerant networks (DTNs) exploits the mechanism of store‐carry‐and‐forward. In this routing mechanism, mobility plays an important role, and we need to control the mobility of nodes around the network to help with carrying messages from the source to the destination. This is a difficult problem because the nodes in the network may move arbitrarily and it is difficult for us to determine when the nodes should move faster to help the data transmission while considering the complicated energy consumption in such a network. At the same time, for most DTNs, the system energy is limited, and energy efficient algorithms are crucial to maximizing the message delivery probability while reducing the delivery cost. In this paper, we investigate the problem of energy efficient mobility speed control in epidemic routing of DTN. We model the message dissemination process under variable mobility speed by a continuous‐time Markov model. With this model, we then formulate the optimization problem of the optimal mobility control for epidemic routing and obtain the optimal policy from the solution of this optimization problem. Furthermore, extensive numerical results demonstrate that the proposed optimal policy significantly outperforms the static policy with constant speed, in terms of energy saving. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Delay Tolerant Networks (DTNs) provide message delivery services to users via intermittently connected nodes. In DTNs, routing is one of the most challenging issues since end-to-end connectivity between nodes may not be available most of the time. Although many routing protocols for DTNs have been proposed, they do not achieve satisfactory performance, since they exploit only some of the network characteristics. In this paper, we present a new DTN routing protocol, called the Link Contact Duration-based Routing Protocol (LCD). Like existing protocols, LCD uses the disconnect duration of a link between two nodes to find the routing path with the shortest end-to-end delay. In addition, LCD uses the contact duration of a link and the number of buffered messages to deliver as many messages as possible in a short time. Our simulation results show that LCD has better performance than existing DTN routing protocols.  相似文献   

10.
Algorithms for effectively routing messages from a source to multiple destination nodes in a store-and-forward computer network are studied. The focus is on minimizing the network cost (NC), which is the sum of weights of the links in the routing path. Several heuristic algorithms are studied for finding the NC minimum path (which is an NP-complete problem). Among them are variations of a minimum spanning tree (MST) heuristic and heuristics for the traveling salesman problem, both of which use global network information. Another set of heuristics examined are based on using only the shortest paths to the destinations. While the MST algorithm has the best worst case performance among all algorithms, a detailed, empirical study of the "average" performance of the algorithms on typical, randomly chosen networks reveals that simpler heuristics are almost as effective. The NC cost measure is also compared to the destination cost (DC), which is the sum of weights of the shortest path distances to all destinations. A scheme of algorithms is given which trades off between NC and DC.  相似文献   

11.
Routing in delay tolerant networks (DTNs) is challenging due to their unique characteristics of intermittent node connectivity. Different protocols (single-, multi-copy, erasure-coding-based etc.) utilizing store-carry-and-forward paradigm have been proposed to achieve routing of messages in such environments by opportunistic message exchanges between nodes that are in the communication range of each other. The sparsity and distributed nature of these networks together with the lack of stable connectivity between source destination pairs make these networks vulnerable to malicious nodes which might attempt to learn the content of the messages being routed between the nodes. In this paper, we study DTNs in which malicious nodes are present, to which we refer to as compromised DTNs. We discuss and analyze the effects of presence of malicious nodes on routing of messages in compromised DTNs. We propose a two period routing approach which aims at achieving the desired delivery ratio by a given delivery deadline in presence of malicious nodes. Our simulation results with both random networks and real DTN traces show that, with proper parameter setting, the proposed method can achieve delivery ratios which surpass those reached by other algorithms by a given delivery deadline.  相似文献   

12.
Reactive routing protocols for mobile ad-hoc networks usually discover routes by disseminating control packets across the entire network; this technique is known as brute-force flooding. This paper presents NARD, which stands for neighbor-assisted route discovery protocol for mobile ad-hoc networks. In NARD, a source node floods a limited portion of the network searching not only for the destination node, but also for routing information related to other nodes (called destination-neighbors) that were near the destination node recently. Destination-neighbors can be used as anchor points where a second limited flooding takes place in search for the destination node. Because only two limited portions of the network are flooded by control packets near the source and destination nodes, NARD can significantly reduce signaling overhead due to route-discovery compared with other proposals. Simulations with NS-2 were carried out to verify the validity of our approach.  相似文献   

13.
In the recent past information transmission through the vehicular ad hoc network (VANET) playing a vital role due to increase in accident statistics. There are numerous networking and VANET protocols helpful to control the trust while transmitting the data from source to destination nodes in traffic environment. In spite of many existing protocols for analyzing the trust in the network, the challenge of routing overhead, high energy consumption and malicious attacks issues still continue in the communication. This research introduces the trust collaboration nodes and Quality of Service (QoS) with energy multipath routing protocol for transmitting the information through VANET. Initially, the trusted nodes have been collected for analyzing the neighbouring nodes and the information are transmitted using the proposed QoS based energy efficient multipath routing protocol. During this transmission, the multi path protocol eliminates the intermediate attacks effectively when compared with the other existing protocols. The Proposed protocol maintains the QoS while routing the information from source to destination and further the efficiency has been analyzed through simulation experiments and Montgomery multiplier based Elliptic Curve Cryptography (ECC) will be used in future for better security and privacy.  相似文献   

14.
Cooperative communication (CC) allows multiple nodes to simultaneously transmit the same packet to the receiver so that the combined signal at the receiver can be correctly decoded. Since the CC can reduce the transmission power and extend the transmission coverage, it has been considered in minimum energy routing protocols to reduce the total energy consumption. However, previous research on cooperative routing only focuses on minimizing the total energy consumption from the source node to the destination node, which may lead to the unbalanced energy distribution among nodes. In this paper, we aim to study the impact of cooperative routing on balancing the energy distribution among nodes. By introducing a new routing scheme which carefully selects cooperative relay nodes and assigns their transmission power, our cooperative routing method can balance the remaining energy among neighboring nodes to maximize the lifetime of the network. Simulation results demonstrate that the proposed cooperative routing algorithm significantly balances the energy distribution and prolongs the lifetime of the network.  相似文献   

15.
On-demand routing protocols have the potential to provide scalable information delivery in large ad hoc networks. The novelty of these protocols is in their approach to route discovery, where a route is determined only when it is required by initiating a route discovery procedure. Much of the research in this area has focused on reducing the route discovery overhead when prior knowledge of the destination is available at the source or by routing through stable links. Hence, many of the protocols proposed to date still resort to flooding the network when prior knowledge about the destination is un-available. This paper proposes a novel routing protocol for ad hoc networks, called On-demand Tree-based Routing Protocol (OTRP). This protocol combines the idea of hop-by-hop routing (as used by AODV) with an efficient route discovery algorithm called Tree-based Optimised Flooding (TOF) to improve scalability of ad hoc networks when there is no prior knowledge about the destination. To achieve this in OTRP, route discovery overheads are minimised by selectively flooding the network through a limited set of nodes, referred to as branching nodes. The key factors governing the performance of OTRP are theoretically analysed and evaluated, including the number of branch nodes, location of branching nodes and number of Route REQuest (RREQ) retries. It was found that the performance of OTRP (evaluated using a variety of well-known metrics) improves as the number of branching nodes increases and the number of consumed RREQ retries is reduced. Additionally, theoretical analysis and simulation results shows that OTRP outperforms AODV, DYMO, and OLSR with reduced overheads as the number of nodes and traffic load increases.  相似文献   

16.
In this paper, we present a routing algorithm for a class of networks where a contemporaneous end‐to‐end path may not exist at the time of data transfer due to intermittent links. Several examples of such networks exist in the context of sensor networks, mobile ad hoc networks and delay tolerant networks. The proposed routing algorithms follow a priori routing similar to source routing. Link state changes are assumed to be known ahead of time, for instance, due to planned duty cycling resulting in scheduled connectivity. The basic idea behind the proposed routing algorithms is to modify the breadth first search (BFS) algorithm to take into account link state changes and find the quickest route between source and destination nodes. We introduce the idea of time‐varying storage domains where all nodes connected for a length of time act as a single storage unit by sharing the aggregated storage capacity of the nodes. This will help situations where storage is a limited resource. We evaluate the routing algorithm with and without storage domain in an extensive simulation. The delay performance of the proposed algorithms is conceptually the same as flooding‐based algorithms but without the penalty of multiple copies. More significantly, we show that the Quickest Storage Domain (Quickest SD) algorithm distributes the storage demand across many nodes in the network topology, enabling balanced load and higher network utilization. In fact, we show that for the same level of performance, we can actually cut the storage requirement in half using the Quickest SD algorithm. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
A location-based routing method for mobile ad hoc networks   总被引:1,自引:0,他引:1  
Using location information to help routing is often proposed as a means to achieve scalability in large mobile ad hoc networks. However, location-based routing is difficult when there are holes in the network topology and nodes are mobile or frequently disconnected to save battery. Terminode routing, presented here, addresses these issues. It uses a combination of location-based routing (terminode remote routing, TRR), used when the destination is far, and link state-routing (terminode local routing, TLR), used when the destination is close. TRR uses anchored paths, a list of geographic points (not nodes) used as loose source routing information. Anchored paths are discovered and managed by sources, using one of two low overhead protocols: friend assisted path discovery and geographical map-based path discovery. Our simulation results show that terminode routing performs well in networks of various sizes. In smaller networks; the performance is comparable to MANET routing protocols. In larger networks that are not uniformly populated with nodes, terminode routing outperforms, existing location-based or MANET routing protocols.  相似文献   

18.
In Delay Tolerant Networks (DTNs), establishing routing path from a source node to a destination node may not be possible, so the opportunistic routings are widely used. The energy and buffer constraints are general in DTNs composed of the mobile phones or Pads. This paper proposes a novel opportunistic routing protocol, denoted by Large Opporturioty (LAOP ), for the energy and buffer constrained DTNs. The objective of LAOP is to reach many receivers of a message with a small number of transmissions. By LAOP, the sender floods a message when the number of its neighbors is not less than a threshold. We compare the delivery performance of LAOP with other four widely used Delay or Disruption Tolerant Network (DTN) routing protocols, Direct Delivery, Epidemic routing, SprayAndWait and PRoPHET and demonstrate that LAOP can improve the delivery performance and decrease the delivery latency simultaneously.  相似文献   

19.
A new global positioning system (GPS)-based routing protocol for ad hoc networks, called zone-based hierarchical link state (ZHLS) routing protocol, is proposed. In this protocol, the network is divided into nonoverlapping zones. Each node only knows the node connectivity within its zone and the zone connectivity of the whole network. The link state routing is performed on two levels: focal node and global zone levels. Unlike other hierarchical protocols, there is no cluster head in this protocol. The zone level topological information is distributed to all nodes. This “peer-to-peer” manner mitigates traffic bottleneck, avoids single point of failure, and simplifies mobility management. Since only zone ID and node ID of a destination are needed for routing, the route from a source to a destination is adaptable to changing topology. The zone ID of the destination is found by sending one location request to every zone. Simulation results show that our location search scheme generates less overhead than the schemes based on flooding. The results also confirm that the communication overhead for creating and maintaining the topology in the proposed protocol is smaller than that in the flat LSR protocol. This new routing protocol provides a flexible, efficient, and effective approach to accommodate the changing topology in a wireless network environment  相似文献   

20.
A unification of network coding and tree-packing (routing) theorems   总被引:1,自引:0,他引:1  
Given a network of lossless links with rate constraints, a source node, and a set of destination nodes, the multicast capacity is the maximum rate at which the source can transfer common information to the destinations. The multicast capacity cannot exceed the capacity of any cut separating the source from a destination; the minimum of the cut capacities is called the cut bound. A fundamental theorem in graph theory by Edmonds established that if all nodes other than the source are destinations, the cut bound can be achieved by routing. In general, however, the cut bound cannot be achieved by routing. Ahlswede et al. established that the cut bound can be achieved by performing network coding, which generalizes routing by allowing information to be mixed. This paper presents a unifying theorem that includes Edmonds' theorem and Ahlswede et al.'s theorem as special cases. Specifically, it shows that the multicast capacity can still be achieved even if information mixing is only allowed on edges entering relay nodes. This unifying theorem is established via a graph theoretic hardwiring theorem, together with the network coding theorems for multicasting. The proof of the hardwiring theorem implies a new proof of Edmonds' theorem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号