首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
粉煤灰掺量与砂浆强度之间相互关系的影响研究   总被引:2,自引:0,他引:2  
试验研究了60℃热水养护每件下,水胶比、粉煤灰种类等因素对粉煤灰掺量与砂浆强度之间相互关系的影响规律。试验结果表明:在60℃热水处理条件下,存在一个最佳的热处理时间,使得粉煤灰砂浆的强度达到最佳值,且存在适宜的粉煤灰掺量使得砂浆强度达到最佳值;随着水胶比、粉煤灰种类不同,粉煤灰砂浆获得最大强度对应的粉煤灰掺量并不相同。本文就试验器件下,阐述了砂荣获得最大强度对应的粉煤灰掺量约在30%左右变化。  相似文献   

2.
试验研究了水胶比,粉煤灰掺量、种类和龄期等对砂浆强度的影响;分析了砂浆强度与粉煤灰掺量之间的关系,进而确定最佳水胶比和掺量灰。  相似文献   

3.
研究了火山灰掺量、水胶比、养护龄期对砂浆强度的影响规律,并对比研究了火山灰与粉煤灰对砂浆强度的影响。结果表明:火山灰的掺量、水胶比及养护龄期对砂浆强度有较大的影响。随火山灰掺量的增大,砂浆强度呈下降趋势;相同条件下,掺火山灰与掺粉煤灰砂浆28d龄期的抗压强度无显著差异。  相似文献   

4.
本文通过正交试验研究水胶比、砂胶比和粉煤灰掺量对砂浆流变性和抗压强度的影响。实验结果表明:水胶比和砂胶比是影响砂浆流动性的主要因素;通过正交试验得出水胶比为0.55、砂胶比为2.65、粉煤灰掺量为25%,流动性和保水性均符合砂浆使用要求,砂浆抗压强度明显高于其他组砂浆抗压强度。  相似文献   

5.
为了研究水胶比、粉煤灰掺量和沙漠砂取代率对冲填砂浆结石技术的混合砂浆性能的影响,采用粉煤灰部分取代胶凝材料,沙漠砂代替中砂,拌制砂浆,并进行正交性试验.通过层次分析和综合平衡分析得到各因素、各水平的影响权重和最佳配比方案.结果表明:沙漠砂取代率和粉煤灰掺量是影响砂浆稠度的主要因素,粉煤灰掺量是影响分层度和28 d抗压强度的主要因素,而影响90 d抗压强度主要因素的是水胶比.对于一般工程项目,由各因素、各水平的权重之和得到的最优试验组合为:水胶比为0.975,粉煤灰掺量为20%,沙漠砂取代率为20%.最优配比均能满足砂浆强度M10砂浆的配制要求,且经济合理.  相似文献   

6.
粉煤灰对砂浆及混凝土强度影响的研究   总被引:9,自引:0,他引:9  
本文研究了水胶比、掺量及龄期对掺粉煤灰的砂浆和混凝土强度的影响规律,分析了粉煤灰的作用机理,提出了粉煤灰饱和掺量的概念,探讨了充分水化条件下砂浆体系获得最佳强度时的饱和掺量。  相似文献   

7.
在低水胶比下研究砂浆抗压、抗折强度,探究粉煤灰替代率、水胶比对砂浆抗压、抗折强度的影响程度及规律,揭示等强机理,建立砂浆强度预测模型.结果 表明:粉煤灰替代率高于50%时,水胶比的降低对其抗压、抗折强度的提升尤为明显.粉煤灰替代率在30%~70%、水胶比在0.32 ~0.24区间变化时,若要维持砂浆28 d抗压强度一致(误差范围为10%以内),粉煤灰替代率每增加20%,水胶比应降低0.04.在三种低水胶比下,粉煤灰替代率高于50%时,若继续增加粉煤灰替代率将会导致砂浆抗折强度的明显下降.另外,根据响应面分析法拟合出砂浆强度、水胶比、粉煤灰替代率三者的关系模型,并得到砂浆28 d龄期等抗压、抗折强度预测曲线.模型中砂浆抗压强度峰值在粉煤灰替代率为20%左右时出现.  相似文献   

8.
利用正交试验设计原理,对9组不同配合比的高韧性水泥基复合材料进行了抗压试验,研究了粉煤灰掺量、水胶比、砂胶比和减水剂掺量这四种因素对高韧性水泥基复合材料抗压强度的影响,并定量分析了各个因素影响的显著性.试验结果表明:各因素对抗压强度影响的主次顺序为水胶比>粉煤灰掺量>减水剂掺量>砂胶比,其中水胶比对强度的影响远大于其他因素,而砂胶比的影响并不明显;抗压强度随水胶比的增大而减小,随砂胶比的增大而缓慢增加;当粉煤灰掺量或减水剂掺量增大时,抗压强度先增大后减小,粉煤灰和减水剂存在最佳掺量.  相似文献   

9.
制备了水胶比分别为0.32,0.40和0.48的纯水泥混凝土试件,水胶比0.32,粉煤灰掺量10%或20%的粉煤灰混凝土试件,矿粉掺量15%或30%的矿粉混凝土试件,粉煤灰和早强剂掺量分别为20%和1%的含早强剂粉煤灰混凝土试件,及粉煤灰和矿粉掺量分别为15%和15%的混凝土试件.将混凝土试件暴露于干湿循环-硫酸盐加速侵蚀环境中,测试试件抗压强度的演变规律.采用灰色关联理论研究了硫酸盐浓度、水胶比、矿物掺合料及外加剂等因素对混凝土抗压强度的影响.通过建立多元灰预测模型分析了硫酸盐侵蚀环境下混凝土的强度劣化规律及服役寿命.结果表明:强度影响因素的灰色关联度由大到小的排序为;水胶比,硫酸盐浓度,测试龄期,粉煤灰掺量,矿粉掺量,早强剂掺量.多元灰预测模型呈现出较高的精度以预测硫酸盐侵蚀环境下混凝土的强度劣化规律和服役寿命.  相似文献   

10.
为研究水胶比、砂胶比和硅微粉掺量对缓凝砂浆流动性和力学性能的影响,分别测试了水胶比为0.30、0.40、0.45、0.50,砂胶比为0.5、1.0、1.5、2.0、2.5和硅微粉掺量为0.0%、5.0%、10.0%共22组缓凝砂浆的稠度、立方体抗压强度、轴心抗压强度、劈裂抗拉强度和静弹性模量.研究结果表明:随着水胶比的增大,缓凝砂浆流动性增大;随着砂胶比增大,缓凝砂浆流动性较小;硅微粉掺量增加会降低缓凝砂浆流动性.采用灰色关联理论分析水胶比、砂胶比和硅微粉掺量对硬化后缓凝砂浆的力学性能影响规律,得到水胶比为影响硬化后缓凝砂浆力学性能的关键因子,而砂胶比次之,硅微粉掺量影响相对最小.  相似文献   

11.
In this paper, the influence of fineness of fly ash on water demand and some of the properties of hardened mortar are examined. In addition to the original fly ash (OFA), five different fineness values of fly ash were obtained by sieving and by using an air separator. Two sieves, Nos. 200 and 325, were used to obtain two lots of graded fine fly ash. For the classification using air separator, the OFA was separated into fine, medium and coarse portions. The fly ash dosage of 40% by weight of binder was used throughout the experiment. From the tests, it was found that the compressive strength of mortar depended on the fineness of fly ash. The strength of mortar containing fine fly ash was better than that of OFA mortar at all ages with the very fine fly ash giving the highest strength. The use of all fly ashes resulted in significant improvement in drying shrinkage with the coarse fly ash showing the least improvement owing primarily to the high water to binder ratio (W/B) of the mix. Significant improvement of resistance to sulfate expansion was obtained for all fineness values except for the coarse fly ash where greater expansion was observed. The resistance to sulfuric acid attack was also improved with the incorporation of all fly ashes. In this case the coarse fly ash gave the best performance with the lowest rate of the weight loss owing probably to the better bonding of the coarse fly ash particles to the cement matrix and less hydration products. It is suggested that the fine fly ash is more reactive and its use resulted in a denser cement matrix and better mechanical properties of mortar.  相似文献   

12.
This research is to study the effect of particle size of fly ash on packing effect and pozzolanic reaction of mortar when 20% of fly ash is used to replace Portland cement type I. Both effects can be determined by using fly ash and insoluble material which have almost the same particle size to replace Portland cement type I. Normally, the compressive strength of fly ash mortar is contributed from hydration reaction, packing effect, and pozzolanic reaction. For mortar mixed with insoluble material, the compressive strength is due to hydration reaction and packing effect. Thus, compressive strength due to pozzolanic reaction can be determined from the difference in compressive strength between fly ash mortar and insoluble material mortar. The results show that the strength activity index of fly ash mortar depends on the median particle size of fly ash and curing ages of mortar samples. At early ages, the strength activity index of fly ash mortar due to packing effect is higher than that due to pozzolanic reaction. At the ages of 3 to 90 days, the difference in strength activity index due to packing effect of fly ashes with median particle size of 2.7 and 160 μm is almost constant about 22% of the strength of standard mortar (STD). The differences in strength activity index due to pozzolanic reaction of fly ashes with median particle size of 2.7 and 160 μm are 3%, 20%, and 27%, respectively, at the ages of 3, 28, and 90 days.  相似文献   

13.
石灰石粉对水泥早期性能的影响   总被引:2,自引:1,他引:1  
试验采用砂浆试件,分别掺入15%、30%以及50%的石灰石粉,以早期抗折、抗压强度及水化热为研究对象,并以粉煤灰作对比研究石灰石粉对水泥早期性能的影响。研究结果表明:石灰石粉掺量为15%时,试件早期抗折、抗压强度均降低非常小,并随着水灰比的增大而加剧;同时,试件早期抗折、抗压强度随石灰石粉掺量的增大而降低,与粉煤灰相比相同掺量时石灰石粉对试件早期抗折、抗压强度的降低作用较小。石灰石粉对水泥早期水化有促进作用,选择石灰石粉作为混凝土掺合料是经济可行的。  相似文献   

14.
张扬  牛荻涛  杨红霞 《硅酸盐通报》2017,36(6):1995-1999
采用实验室模拟酸雨侵蚀试验,研究了酸雨环境下水胶比、粉煤灰掺量、pH值和SO2-4浓度这四个指标对粉煤灰混凝土抗压强度的影响,并用灰关联法分析了各因素对抗压强度的影响程度.结果表明:抗压强度随SO2-4浓度、粉煤灰掺量、水胶比的增大而下降,随pH值的减小而下降.酸雨环境下粉煤灰混凝土的抗压强度会显著降低,SO2-4浓度对其影响最大.  相似文献   

15.
通过新拌混凝土需水量、抗压强度、CL^-快速渗透试验和5%NaCl溶液浸泡试验,确定不同细度粉煤灰配置的低、中、高强混凝土的抗CL^-渗透能力。结果表明:粉煤灰细度可提高低、中强混凝土的早期强度;高强混凝土的早期强度下降较少;各强度等级混凝土的后期强度普遍提高。粉煤灰细度越高混凝土抗CL^-渗透能力越明显,高水胶比混凝土比低水胶比混凝土更明显。  相似文献   

16.
The replacement of cement by mineral admixtures in concrete has been of increasing interest in the construction industry. Nevertheless, several of the potential replacements, such as fly ash class F, lower the compressive strength of concrete at early age. This project investigates the use of nanosilica to compensate for such loss of compressive strength. A statistical experimental design involving mixtures of Portland cement, fly ash and nanosilica, in addition to water/binder ratio as an external factor, is proposed to study their combined effect on the compressive strength of concrete. This design allows estimating a cubic regression model that properly accounts for the effects of the mixture components within a constrained experimental region. The range of each factor was selected according to levels normally used in the industry. Finally, an optimisation strategy permits to recommend the use of nanosilica when high percentages of cement replacement by fly ash are present.  相似文献   

17.
分选与磨细粉煤灰对水泥胶砂性能的影响   总被引:1,自引:0,他引:1  
研究了分选与磨细粉煤灰的颗粒分布与形貌的差异及对水泥胶砂性能的影响。研究结果表明:当勃氏比表面积相近,磨细粉煤灰的中位粒径大于分选细粉煤灰,其圆珠状颗粒较少,表面较为粗糙。在相同水胶比的条件下,掺分选粗粉煤灰的水泥胶砂流动度及强度均低;分选粗粉煤灰磨细后,不仅减少了颗粒的粘连,增加了比表面积,而且提高了粉煤灰的反应活性和水泥胶砂流动度及强度,虽其水泥胶砂流动度仍小于掺分选细粉煤灰的水泥,3d水泥胶砂强度也略低,但其28d水泥胶砂强度略高于掺分选细粉煤灰的水泥;在相同水泥胶砂流动度的条件下,掺磨细粉煤灰配制的水泥胶砂3d强度低于掺分选细粉煤灰的水泥,但随着水化龄期的增长,其差距逐步缩小,至60d时可超过后者。  相似文献   

18.
为了提高抹灰砂浆的强度和体积稳定性,研究了水泥用量和灰渣比(循环硫化床(CFB)飞灰和CFB炉渣的质量比)对CFB灰渣抹灰砂浆2 h稠度损失率、抗压强度和体积稳定性的影响,并采用扫描电子显微镜、X射线能谱仪和X射线衍射仪对砂浆的微观形貌、元素分布和物相组成进行测试表征。结果表明,当水泥用量为5%、8%、12%(质量分数)时,CFB灰渣抹灰砂浆分别达到抹灰砂浆M10、M15、M20的强度等级。当胶凝材料用量一定时,随着水泥用量增大,砂浆2 h稠度损失率减小;当水泥用量一定时,随着灰渣比增大,砂浆2 h稠度损失率增大,膨胀效应减弱。CFB灰渣抹灰砂浆中生成的膨胀性钙矾石有效填充了颗粒之间的孔隙,从而提高砂浆的强度和体积稳定性。  相似文献   

19.
采用正交试验方法,研究了粉煤灰掺量、细度和Na2SO4掺量对水泥胶砂试块抗折、抗压强度影响规律。结果表明:粉煤灰掺量对水泥胶砂试块的7d抗折、抗压强度影响最显著;粉煤灰掺量和粉煤灰细度对28d抗折、抗压强度影响都比较显著;而Na2SO4掺量对7、28d抗折、抗压强度影响不大。  相似文献   

20.
Based on experimental results concerning the compressive strength development of concrete containing fly ash, the authors derived an estimation equation for compressive strength development. The equation can express coefficient , which indicates the activity of fly ash as a binder, in the form of a function of age, fly-ash content, and Blaine specific surface area of fly ash.

This equation is capable of explaining the increases in the early strength due to fly ash in place of part of fine aggregate, the decreases in the early strength due to fly ash in place of part of cement, the increases in the long-term strength due to pozzolanic reaction, the relationship between the fly-ash replacement ratio and the ratio of strength increase/decrease, and the effect of fly ash's Blaine specific surface area on the strength.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号