首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 710 毫秒
1.
Using Laplace transformation technique, semi-analytical solutions are obtained for three basic viscoelastic fluid flow problems under the effect of the Jeffreys model. These semi-analytical solutions are not available in the literature. The present work investigates the effect of two types of driving forces on the flow behavior. These two types are the velocity-type and shear-type driving forces. The effect of the relaxation and retardation times on the flow behavior for these two types of driving forces may be viewed well using the obtained semi-analytical solutions. The three fundamental problems are transient Couette flow, transient wind-driven flow over finite domains and the transient Poiseuille flow in parallel-plates channels. It is shown that as the dimensionless relaxation time (λ1) increases, the flow response to the imposed driving force becomes slower. This implies that the flow needs more time to feel the presence of the driving force and hence needs more time to attain steady-state behavior. On the other hand, the effect of the dimensionless retardation time (λ2) depends on the type of the driving force imposed on the system. For a velocity-type driving force, the flow response becomes faster as the dimensionless retardation time (λ2) increases and for a shear-type driving force the flow response becomes slower as the dimensionless retardation time (λ2) increases.  相似文献   

2.
Vapor pressures of five methyl-substituted dicarboxylic acids are inferred from measurements of evaporation rates of sub-micron particles using the TDMA technique at ambient temperatures. Vapor pressures obtained are: , , , , , , . These vapor pressures are compared with available literature data and with vapor pressures of the un-substituted acids. Our results demonstrate that molecular structure is important for solid state vapor pressures of secondary organic aerosol components at ambient conditions.  相似文献   

3.
All aerosol formation and evolution processes, such as nucleation, condensation, fragmentation, etc., are understood and rationalized via fundamental probabilistic concepts such as probabilities of collision, coagulation, dispersion, etc. Therefore all theoretical size distribution functions (lognormal, modified gamma distribution, self-preserving particle size distribution for Brownian coagulation, etc.) are in fact size probability density functions pdf(r). Any (e.g., measured) size distribution f(r) of an aerosol system is some random realization of its pertinent size probability density function pdf(r). When pdf(r) is viewed as a continuous function, the corresponding size distribution vanishes almost everywhere excluding some randomly set of sizes where f(r)=1. We investigate proximity between f(r) and pdf(r) in finite size intervals and derive expressions for estimation of the standard deviations of several aerosol size-dependent properties arising from randomness of f(r).  相似文献   

4.
Flow through packed bed reactors: 1. Single-phase flow   总被引:3,自引:0,他引:3  
Single-phase pressure drop was studied in a region of flow rates that is of particular interest to trickle bed reactors . Bed packings were made of uniformly sized spherical and non-spherical particles (cylinders, rings, trilobes, and quadralobes). Particles were packed by means of two methods: random close or dense packing (RCP) and random loose packing (RLP) obtaining bed porosities in the range of 0.37–0.52. It is shown that wall effects on pressure drop are negligible as long as the column-to-particle diameter ratio is above 10. Furthermore, the capillary model approach such as the Ergun equation is proven to be a sufficient approximation for typical values of bed porosities encountered in packed bed reactors. However, it is demonstrated that the original Ergun equation is only able to accurately predict the pressure drop of single-phase flow over spherical particles, whereas it systematically under predicts the pressure drop of single-phase flow over non-spherical particles. Special features of differently shaped non-spherical particles have been taken into account through phenomenological and empirical analyses in order to correct/upgrade the original Ergun equation. With the proposed upgraded Ergun equation one is able to predict single-phase pressure drop in a packed bed of arbitrary shaped particles to within ±10% on average. This approach has been shown to be far superior to any other available at this time.  相似文献   

5.
The aerodynamic particle sizer (APS) measures the size distributions of particles with aerodynamic diameter between 0.5 and in real time. To provide accurate size distributions, the APS must measure both particle size and concentration correctly. The objective of this study was to characterize the counting efficiency of the APS as a function of particle size (0.8–), particle type (liquid or solid), and APS model number (3310 vs. 3321). For solid particles, counting efficiencies ranged between 85% and 99%. For liquid droplets, counting efficiencies progressively declined from 75% at 0.8-μm drops to 25% for 10-μm drops. Fluorometric wash tests indicated that transmission losses occur when larger droplets impact on the instrument's inner nozzle. However, transmission losses did not account entirely for the reduced droplet counting efficiencies, indicating that additional losses may have occurred downstream of the inner nozzle. Between instrument comparisons revealed that although multiple APSs report similar number concentrations, small deviations in particle sizing can produce substantial errors when number concentrations are converted to mass concentrations.  相似文献   

6.
This study investigates the possibility of using a composite-supported polymeric liquid membrane (CSPLM) configuration for the Membrane Aromatic Recovery System (MARS). The membrane was prepared by impregnating the liquid membrane phase into the pores of a composite flat sheet membrane consisting of a microporous support and a thin non-porous layer. A polyvinylidenfluoride (PVDF) microporous support coated with a thin non-porous polydimethylsiloxane (PDMS) layer was chosen as a composite membrane due to its superior combination of mass transfer rates and chemical resistance among the membranes tested and polypropylene glycol (PPG) was used as a liquid membrane phase due to its high affinity for phenol. The resulting membrane showed uniform selectivity and operational stability under the continuous MARS operating conditions for more than two months. The mass transfer rates () were 5 times higher than those of the silicone rubber tubing () which is used in commercial scale MARS technology. The CSPLM also exhibited reduced water flux and low sodium ion transfer. The partition coefficient of phenol between PPG/water was measured as 84. A marked effect of ionic strength on partition coefficient of phenol was observed with partition coefficient increase to 134 when measured in the presence of 20 wt% KCl in phenol aqueous solution.  相似文献   

7.
We present Monte Carlo simulations using an equilibrium lattice-gas model for the electrosorption of Cl on Ag(1 0 0) single-crystal surfaces. Fitting the simulated isotherms to chronocoulometry experiments, we extract parameters such as the electrosorption valency γ and the next-nearest-neighbor lateral interaction energy ϕnnn. Both coverage-dependent and coverage-independent γ were previously studied, assuming a constant ϕnnn [I. Abou Hamad, Th. Wandlowski, G. Brown, P.A. Rikvold, J. Electroanal. Chem. 554–555 (2003) 211]. Here, a self-consistent, entirely electrostatic picture of the lateral interactions with a coverage-dependent ϕnnn is developed, and a relationship between ϕnnn and γ is investigated for Cl on Ag(1 0 0).  相似文献   

8.
This paper describes a possible active mixing method for a microbioreactor that was designed, simulated and tested. Pressure based recycle flow was investigated in a cylindrical microreactor for mixing efficiency. Based on the computational fluid dynamics (CFD) simulation results and the requirements of the application, the recycle flow mixing method proved to be suitable as a method to induce sufficient mixing in the microbioreactor. This was verified experimentally using image analysis of dye distribution behavior.  相似文献   

9.
HAADF-STEM studies have provided detailed morphological insight regarding MoS2, WS2, Co–Mo–S, Ni–Mo–S and Ni–W–S nanostructures in graphite-supported catalysts. It is found that the technique allows the catalytically active edges to be imaged even for single layer metal sulfide structures. Unpromoted MoS2 and WS2 are predominantly present as slightly truncated triangular clusters containing only a single S–M–S layer (M = Mo, W). The addition of promoter atoms results in more heavy truncations consistent with the expected tendency for the Co–Mo–S structures to expose promoted S-type edges at the expense of unpromoted Mo-type edges. However, the HAADF-STEM (High-Angle Annular Dark-field Scanning Transmission Electron Microscopy) results show for the first time that Co–Mo–S and Ni–W–S may also expose extended high index truncations.  相似文献   

10.
We have carried out a detailed investigation on anion impurities in self-organized porous alumina membranes (PAMs) prepared by a two-step electrochemical anodization process in oxalic acid solutions. The employment of the energy dispersive spectroscopy, high resolution transmission electron microscope and infrared absorption spectra has demonstrated the existence and nonuniform distribution of the anions in the PAM sidewalls. The variation of the COO stretching vibration and CO2 absorption bands indicates that annealing can lead to the decrease of the concentration in the PAMs due to the decomposition of impurity groups related to . We have further presented clear functionality that the anions have played key roles in the refractive index and absorption coefficient of the PAMs, and the surface morphology and crystallization of the deposited ZnO nanopore arrays.  相似文献   

11.
In this paper, turbulent solid–liquid two-phase flow involving slender particles in a tank stirred by standard Rushton turbines is simulated with two-fluid model using the improved inner–outer iterative method. Standard kε model is used to deal with turbulent flow. By comparison with the case of equivalent spherical particles, it is found that the flow field of slender particles is similar to that of spherical particles. The evolution of particle orientation as it follows the liquid flow in a stirred tank is modeled directly from the rigid slender rods revolution equation. Experiments about solid–liquid two-phase flow are also performed in a baffled tank using DPIV (digital particle image velocimetry). All simulation results are compared with experiments. The comparison between simulation and experiments confirms that the results are reliable. The good agreements between simulation and experiments verify the reliability of the methods employed in this paper. The influences of impeller speed on flow field and orientations are also investigated.  相似文献   

12.
A new microcalorimeter with eight parallel channels using robust, low cost sensors for characterization of coatings and adhesives is described and first experiments on coatings and adhesives are presented. The calorimetric sensors are based on thin glass plates (20 mm × 20 mm, thickness 150 μm) with heater and thermocouple sputtered on the surfaces (calorimetric active area of about 9 mm2). The setup allows heating and cooling experiments as well as isothermal measurements in the temperature-modulated mode with up to eight sensors in parallel. The measured quantities are the real (Cp) and imaginary part (Cp) of the complex heat capacity (), the related absolute value of the heat capacity () and the heat flow . An industrial computer (NI PXI system) with specific software for calibration and data recording controls the electronic components. Sensors can be embedded in a temperature controlled oven (heating and cooling by Peltier elements) or alternatively in a climatic cabinet with controlled temperature and humidity.

The method has been applied successfully to monitoring of film formation of aqueous polymer dispersions (styrene-acrylate copolymer) and curing of coatings.  相似文献   


13.
A flame electrospray pyrolysis is presented for synthesizing CeO2 nanoparticles with a dense morphology, high crystallinity and nanometer size. Hydrated cerium nitrate precursor dissolved in an ethanol/diethylene glycol butyl ether mixture was injected into a CH4/air premixed flame using an electrospray method. The number size distributions of the as-prepared particles were trimodal. It is suggested that the particles for the fine mode were formed by a Rayleigh disintegration of the charged precursor droplets during the droplet evaporation. The particles for the coarse and middle modes are surmised to come from primary and secondary droplets, respectively, which were formed simultaneously during the atomization processes. The CeO2 nanoparticles for the coarse mode were nonspherical and composed of few crystallites. The nanoparticles for the fine and middle modes were nearly spherical and nonagglomerated. The as-prepared CeO2 nanoparticles showed highly crystallinity.  相似文献   

14.
The electrical conductivity at intermediate temperature of 150–250 °C and the activation energy for conductivity of composite proton conductors, 2NH4PO3–(NH4)2Mn(PO3)4 and 2NH4PO3–(NH4)2SiP4O13, were investigated as a function of water vapor pressure, PH2O. The activation energy decreased linearly with the natural logarithm of PH2O, indicating that water is chemically adsorbed to the electrolytes. The decrease in activation energy is possibly caused by formation of hydrogen bonds between the adsorbed water and the electrolytes. In addition, the pre-exponential factor of Arrhenius equation, σ0, increased with PH2O. This suggests that the adsorbed water may generate additional mobile protons for the composite electrolyte. Therefore, the enhancement in the electrical conductivity of a NH4PO3-based electrolyte in a water-vapor rich atmosphere originates possibly from the decrease in activation energy as well as the increase in mobile proton concentration.  相似文献   

15.
The kinetics of iodine oxide aerosol production and growth was studied in an aerosol flow reactor by the photolysis of I2 in an excess of O3, at a temperature of 295 K and a total pressure of 1 atm. The time-resolved evolution of the particle size distribution was fitted using a model which assumes that the initial period of particle growth (in the free molecular flow regime) is dominated by collision-coalescence, maintaining spherical shape and compact structure. This leads to the formation of primary particles of about 3 nm radius, which trigger fractal (agglomerative) growth in the transition regime resulting in particle aggregates characterised by lower mass fractal dimensions (Df) in the range 2.2–2.5. Enhancement of the particle pair collision kernels due to competing van der Waals and hydrodynamic forces is treated within the model. The densities of the fractal aggregates are lower than that of the bulk material, recently identified as I2O5 [Saunders, R. W., & Plane, J. M. C. (2005). Formation pathways and composition of iodine oxide ultrafine particles. Environmental Chemistry, 2, 299], as a result of internal void space within the aggregate structures.  相似文献   

16.
In this paper, the inversion processing of cascade impactor data to construe continuous size distributions within fine particulate matter (PM2.5) is examined for residential oil furnace and fireplace appliance emissions. Impactor data from tests with these emissions sources are selected for the challenges they pose to comprehending the size distributions of aerosol mass and chemical species. In specific, the oil furnace aerosol offers an opportunity to apply data inversion to study a bimodal lognormal distribution in which much of the aerosol mass is impactor-penetrating nanoparticles . The fireplace emissions on the other hand cover the issue of a chemical size distribution, which is subject to particle loss and characterized by a single lognormal, accumulation mode peak. Computational steps relevant to the application of the data inversion are illustrated in detail. Evaluation of correlation coefficients (0.992) indicates that the inversion model predictions fit the impactor data well. Simulations of systematic measurement error (±10%) at each impactor stage are shown to have a negligible impact on the inversion results for test data. It is concluded that data inversion can be effective when (i) source emissions contain a portion of particles that falls outside the measurement range of cascade impactors, (ii) a mass size distribution of an individual species is determined without the knowledge of the total mass concentration for that species, or when (iii) losses in the particle charger system are significant.  相似文献   

17.
The electrostatic charge properties of commercial metered dose inhaler (MDI) aerosols, including Ventolin®, Flixotide®, Tilade® and QVAR®, sampled through new and detergent-coated AeroChamber® Plus spacers were studied using a modified 13-stage electrical low pressure impactor (ELPI) with aerodynamic cutoff diameters ranging from 0.028 to . Aerosol particles deposited on the impactor stages according to their aerodynamic diameters and their charges were simultaneously measured by the electrometers. The deposited drug mass was assayed chemically using HPLC. The surface potential on the inner spacer wall was measured with an electrostatic probe before and after aerosol actuation. High surface potentials were found on the new spacers whereas the detergent-coated spacers had minimal charges due to the conductive coating. MDI aerosol charges were decreased when spacers were used but the charge profiles of the aerosols were not altered qualitatively. New spacers had the lowest throat deposition, fine particle dose, and net aerosol and fine particle charges as a result of high spacer retention. These trends were partially reversed by the detergent-coated spacers. In general, the charge per mass of drug (charge-to-mass ratio) for particles from detergent-coated spacers was higher than those from new spacers. This was thought to be due to the reduction of electrostatic deposition inside the spacer thus leading to particles carrying higher charges being sampled. The calculated number of elementary charges per drug particle ranged from zero to several hundred, which is sufficiently high to potentially affect lung deposition. The ELPI provided high resolution charge profiles on MDI aerosols delivered through spacers.  相似文献   

18.
The spin state of iron ions in Fe-ZSM-5 zeolites can be purposefully varied by adsorption of gaseous probe molecules. The resulting Fe complexes with half-integer spin (, and ) can be reliably identified by electron paramagnetic resonance (EPR). A good correlation has been found between the concentration of surface sites active in low-temperature nitrous oxide decomposition and the concentration of low-spin () nitrosyl complexes of Fe formed after adsorption of NO molecules. Based on the analysis of the formation of such complexes under varying conditions, we conclude that these active sites contain a binuclear iron complex with S = 0 and three adsorbed NO molecules. An approach to investigate various Fe-containing sites in oxidation catalysts is discussed.  相似文献   

19.
Solubilities of carbon monoxide and hydrogen in propylene carbonate (PC), biphasic mixture of PC and dodecane (1:1 v/v) and thermomorphic (or temperature dependent) multicomponent solvent (TMS)-system consisting of PC, dodecane and 1,4-dioxane were measured over the temperature and pressure range of 298–343 K and 0.1–1.5 MPa, respectively, in a high pressure solubility cell. The measured solubilities were correlated by a temperature-dependent Henry's law constant and interpreted by activity coefficient models based on the regular solution theory (RST) with Yen and McKetta extension for polar solvents as well as by the UNIFAC group contribution method. The experimental data showed a very good fit in terms of Henry's law constant except for H2–PC and CO–PC binaries. The RST-based model, that did not involve any adjustable constant, could predict the experimental solubility to within ±11.0% error. The UNIFAC model worked better with the interaction parameters computed as a linear function of temperature using a part of the experimental solubility data set. The accuracy of prediction was found to be within a maximum error of ±8.5%. The TMS system shows higher affinity for CO and H2, which is comparable to the single phase PC. The experimental solubilities in the liquids are substantially larger than those in most other hydroformylation solvents thereby establishing its advantage over the alternative solvents for industrial use. Liquid–liquid equilibrium for the TMS system consisting of PC, dodecene and 1,4-dioxane system was also measured at 298, 353 and 373 K.  相似文献   

20.
Structure and thermal stability of mesostructured zirconium oxophosphates   总被引:1,自引:0,他引:1  
Highly ordered mesoporous zirconium oxophosphates (designated as ZOP) with hexagonal P63/mmc and cubic symmetries were firstly prepared by using gemini cationic surfactants as templates. It has been found that the thermal stability was elevated with the structure curvature order: cubic , hexagonal P63/mmc and cubic . The ZOP mesoporous materials with cubic and hexagonal P63/mmc structures were stable up to 800 °C, which provides a new insight into the structural factors governing self-assembly of thermally stable mesoporous materials and would open up new possibilities of porous materials for advanced applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号