首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Caenorhabditis elegans, a bacterivorous nematode, lives in complex rotting fruit, soil, and compost environments, and chemical interactions are required for mating, monitoring population density, recognition of food, avoidance of pathogenic microbes, and other essential ecological functions. Despite being one of the best-studied model organisms in biology, relatively little is known about the signals that C. elegans uses to interact chemically with its environment or as defense. C. elegans exudates were analyzed by using several analytical methods and found to contain 36 common metabolites that include organic acids, amino acids, and sugars, all in relatively high abundance. Furthermore, the concentrations of amino acids in the exudates were dependent on developmental stage. The C. elegans exudates were tested for bacterial chemotaxis using Pseudomonas putida (KT2440), a plant growth promoting rhizobacterium, Pseudomonas aeruginosa (PAO1), a soil bacterium pathogenic to C. elegans, and Escherichia coli (OP50), a non-motile bacterium tested as a control. The C. elegans exudates attracted the two Pseudomonas species, but had no detectable antibacterial activity against P. aeruginosa. To our surprise, the exudates of young adult and adult life stages of C. elegans exudates inhibited quorum sensing in the reporter system based on the LuxR bacterial quorum sensing (QS) system, which regulates bacterial virulence and other factors in Vibrio fischeri. We were able to fractionate the QS inhibition and bacterial chemotaxis activities, thus demonstrating that these activities are chemically distinct. Our results demonstrate that C. elegans can attract its bacterial food and has the potential of partially regulating the virulence of bacterial pathogens by inhibiting specific QS systems.  相似文献   

2.
Pseudomonas aeruginosa, an important opportunistic pathogen, is capable of producing various virulence factors and forming biofilm that are regulated by quorum sensing (QS). It is known that targeting virulence factor production and biofilm formation instead of exerting selective pressure on growth such as conventional antibiotics can reduce multidrug resistance in bacteria. Therefore, many quorum-sensing inhibitors (QSIs) have been developed to prevent or treat this bacterial infection. In this study, wogonin, as an active ingredient from Agrimonia pilosa, was found to be able to inhibit QS system of P. aeruginosa PAO1. Wogonin downregulated the expression of QS-related genes and reduced the production of many virulence factors, such as elastase, pyocyanin, and proteolytic enzyme. In addition, wogonin decreased the extracellular polysaccharide synthesis and inhibited twitching, swimming, and swarming motilities and biofilm formation. The attenuation of pathogenicity in P. aeruginosa PAO1 by wogonin application was further validated in vivo by cabbage infection and fruit fly and nematode survival experiments. Further molecular docking analysis, pathogenicity examination of various QS-related mutants, and PQS signal molecule detection revealed that wogonin could interfere with PQS signal molecular synthesis by affecting pqsA and pqsR. Taken together, the results indicated that wogonin might be used as an anti-QS candidate drug to attenuate the infection caused by P. aeruginosa.  相似文献   

3.
4.
Pseudomonas donghuensis HYS is more virulent than P. aeruginosa toward Caenorhabditis elegans but the mechanism underlying virulence is unclear. This study is the first to report that the specific gene cluster gtrA/B/II in P. donghuensis HYS is involved in the virulence of this strain toward C. elegans, and there are no reports of GtrA, GtrB and GtrII in any Pseudomonas species. The pathogenicity of P. donghuensis HYS was evaluated using C. elegans as a host. Based on the prediction of virulence factors and comparative genomic analysis of P. donghuensis HYS, we identified 42 specific virulence genes in P. donghuensis HYS. Slow-killing assays of these genes showed that the gtrAB mutation had the greatest effect on the virulence of P. donghuensis HYS, and GtrA, GtrB and GtrII all positively affected P. donghuensis HYS virulence. Two critical GtrII residues (Glu47 and Lys480) were identified in P. donghuensis HYS. Transmission electron microscopy (TEM) showed that GtrA, GtrB and GtrII were involved in the glucosylation of lipopolysaccharide (LPS) O-antigen in P. donghuensis HYS. Furthermore, colony-forming unit (CFU) assays showed that GtrA, GtrB and GtrII significantly enhanced P. donghuensis HYS colonization in the gut of C. elegans, and glucosylation of LPS O-antigen and colonization in the host intestine contributed to the pathogenicity of P. donghuensis HYS. In addition, experiments using the worm mutants ZD101, KU4 and KU25 revealed a correlation between P. donghuensis HYS virulence and the TIR-1/SEK-1/PMK-1 pathways of the innate immune p38 MAPK pathway in C. elegans. In conclusion, these results reveal that the specific virulence gene cluster gtrA/B/II contributes to the unique pathogenicity of HYS compared with other pathogenic Pseudomonas, and that this process also involves C. elegans innate immunity. These findings significantly increase the available information about GtrA/GtrB/GtrII-based virulence mechanisms in the genus Pseudomonas.  相似文献   

5.
Emerging antibiotic resistance among human pathogens has galvanized efforts to find alternative routes to combat bacterial virulence. One new approach entails interfering with the ability of bacteria to coordinate population‐wide gene expression, or quorum sensing (QS), thus inhibiting the production of virulence factors and biofilm formation. We have recently developed such a strategy by targeting LasR, the master regulator of QS in the opportunistic human pathogen Pseudomonas aeruginosa, through the rational design of covalent inhibitors closely based on the core structure of the native ligand. We now report several groups of new inhibitors, one of which, fluoro‐substituted ITC‐12, displayed complete covalent modification of LasR, as well as effective QS inhibition in vitro and promising in vivo results. In addition to their potential clinical relevance, this series of synthetic QS modulators can be used as a tool to further unravel the complicated QS regulation in P. aeruginosa.  相似文献   

6.
Quercetin (QUE)—a plant-derived flavonoid, is recently established as an effective quorum sensing (QS) inhibiting agent in Pseudomonas aeruginosa—the main bacterial pathogen in bronchiectasis lungs. Successful clinical application of QUE, however, is hindered by its low solubility in physiological fluids. Herein we developed a solubility enhancement strategy of QUE in the form of a stable amorphous nanoparticle complex (nanoplex) of QUE and chitosan (CHI), which was prepared by electrostatically driven complexation between ionized QUE molecules and oppositely charged CHI. At its optimal preparation condition, the QUE–CHI nanoplex exhibited a size of roughly 150 nm with a 25% QUE payload and 60% complexation efficiency. The complexation with CHI had no adverse effect on the antibacterial and anticancer activities of QUE, signifying the preservation of QUE’s bioactivities in the nanoplex. Compared to the native QUE, the QUE–CHI nanoplex exhibited superior QS inhibition in suppressing the QS-regulated swimming motility and biofilm formation of P. aeruginosa, but not in suppressing the virulence factor production. The superior inhibitions of the biofilm formation and swimming motility afforded by the nanoplex were attributed to (1) its higher kinetic solubility (5-times higher) that led to higher QUE exposures, and (2) the synergistic QS inhibition attributed to its CHI fraction.  相似文献   

7.
Many bacteria, such as Pseudomonas aeruginosa, regulate phenotypic switching in a population density-dependent manner through a phenomenon known as quorum sensing (QS). For Gram-negative bacteria, QS relies on the synthesis, transmission, and perception of low-molecular-weight signal molecules that are predominantly N-acyl-l -homoserine lactones (AHLs). Efforts to disrupt AHL-mediated QS have largely focused on the development of synthetic AHL analogues (SAHLAs) that are structurally similar to native AHLs. However, like AHLs, these molecules tend to be hydrophobic and are poorly soluble under aqueous conditions. Water-soluble macrocycles, such as cyclodextrins (CDs), that encapsulate hydrophobic guests have long been used by both the agricultural and pharmaceutical industries to overcome the solubility issues associated with hydrophobic compounds of interest. Conveniently, CDs have also demonstrated anti-AHL-mediated QS effects. Here, using fluorescence spectroscopy, NMR spectrometry, and mass spectrometry, we evaluate the affinity of SAHLAs, as well as their hydrolysis products, for β-CD inclusion. We also evaluated the ability of these complexes to inhibit wild-type P. aeruginosa virulence in a Caenorhabditis elegans host infection study, for the first time. Our efforts confirm the potential of β-CDs for the improved delivery of SAHLAs at the host/microbial interface, expanding the utility of this approach as a strategy for probing and controlling QS.  相似文献   

8.
Many bacteria regulate gene expression through a cell–cell signaling process called quorum sensing (QS). In proteobacteria, QS is largely mediated by signaling molecules known as N‐acylated L ‐homoserine lactones (AHLs) and their associated intracellular LuxR‐type receptors. The design of non‐native small molecules capable of inhibiting LuxR‐type receptors (and thereby QS) in proteobacteria is an active area of research, and numerous lead compounds are AHL derivatives that mimic native AHL molecules. Much of this previous work has focused on the pathogen Pseudomonas aeruginosa, which controls an arsenal of virulence factors and biofilm formation through QS. The MexAB‐OprM efflux pump has been shown to play a role in the secretion of the major AHL signal in P. aeruginosa, N‐(3‐oxododecanoyl) L ‐homoserine lactone. In the current study, we show that a variety of non‐native AHLs and related derivatives capable of inhibiting LuxR‐type receptors in P. aeruginosa display significantly higher potency in a P. aeruginosa Δ(mexAB‐oprM) mutant, suggesting that MexAB‐OprM also recognizes these compounds as substrates. We also demonstrate that the potency of 5,6‐dimethyl‐2‐aminobenzimidazole, recently shown to be a QS and biofilm inhibitor in P. aeruginosa, is not affected by the presence/absence of the MexAB‐OprM pump. These results have implications for the use of non‐native AHLs and related derivatives as QS modulators in P. aeruginosa and other bacteria, and provide a potential design strategy for the development of new QS modulators that are resistant to active efflux.  相似文献   

9.
Pseudomonas aeruginosa uses N‐acylated l ‐homoserine lactone signals and a triumvirate of LuxR‐type receptor proteins—LasR, RhlR, and QscR—for quorum sensing (QS). Each of these receptors can contribute to QS activation or repression and, thereby, the control of myriad virulence phenotypes in this pathogen. LasR has traditionally been considered to be at the top of the QS receptor hierarchy in P. aeruginosa; however, recent reports suggest that RhlR plays a more prominent role in infection than originally predicted, in some circumstances superseding that of LasR. Herein, we report the characterization of a set of synthetic, small‐molecule agonists and antagonists of RhlR. Using E. coli reporter strains, we demonstrated that many of these compounds can selectively activate or inhibit RhlR instead of LasR and QscR. Moreover, several molecules maintain their activities in P. aeruginosa at concentrations analogous to native RhlR signal levels. These compounds represent useful chemical probes to study the role of RhlR in the complex QS circuitry of P. aeruginosa, its direct (and indirect) effects on virulence, and its overall merit as a target for anti‐infective therapy.  相似文献   

10.
Pseudomonas aeruginosa is an opportunistic pathogen that synthesizes and secretes a wide range of virulence factors. P. aeruginosa poses a potential threat to human health worldwide due to its omnipresent nature, robust host accumulation, high virulence, and significant resistance to multiple antibiotics. The pathogenicity of P. aeruginosa, which is associated with acute and chronic infections, is linked with multiple virulence factors and associated secretion systems, such as the ability to form and utilize a biofilm, pili, flagella, alginate, pyocyanin, proteases, and toxins. Two-component systems (TCSs) of P. aeruginosa perform an essential role in controlling virulence factors in response to internal and external stimuli. Therefore, understanding the mechanism of TCSs to perceive and respond to signals from the environment and control the production of virulence factors during infection is essential to understanding the diseases caused by P. aeruginosa infection and further develop new antibiotics to treat this pathogen. This review discusses the important virulence factors of P. aeruginosa and the understanding of their regulation through TCSs by focusing on biofilm, motility, pyocyanin, and cytotoxins.  相似文献   

11.
Bacteria use small signaling molecules to communicate in a process termed “quorum sensing” (QS), which enables the coordination of survival strategies, such as production of virulence factors and biofilm formation. In Gram‐negative bacteria, these signaling molecules are a series of N‐acylated L ‐homoserine lactones. With the goal of identifying non‐native compounds capable of modulating bacterial QS, a virtual library of N‐dipeptido L ‐homoserine lactones was screened in silico with two different crystal structures of LasR. The 30 most promising hits were synthesized on HMBA‐functionalized PEGA resin and released through an efficient acid‐mediated cyclative release mechanism. Subsequent screening for modulation of QS in Pseudomonas aeruginosa and E. coli identified six moderately strong activators. A follow‐up library designed from the preliminary derived structure–activity relationships was synthesized and evaluated for their ability to activate the QS system in this bacterium. This resulted in the identification of another six QS activators (two with low micromolar activity) thus illuminating structural features required for QS modulation.  相似文献   

12.
Lipopolysaccharide (LPS) is the main surface constituent of Gram-negative bacteria. Lipid A, the hydrophobic moiety, outer monolayer of the outer cell membrane forms the major component of LPS. Immunogenic Lipid A is recognized by the innate immune system through the TLR 4/MD-2 complex. Pseudomonas aeruginosa PAO1, a Gram-negative bacterium is known to cause nosocomial infection and known for its adaptation to adverse environmental conditions. Pseudomonas aeruginosa can infect a broad host spectrum including Caenorhabditis elegans, a simple free living soil nematode. Here, we reveal that PAO1 modifies its Lipid A during the host interaction with C. elegans. The penta-acylated form of Lipid A was identified by using matrix assisted laser desorption ionization–time of flight analysis and the β-(1,6)-linked disaccharide of glucosamine with phosphate groups, 2 and 2′ amide linked fatty acid chain and 3 and 3′ ester linked fatty acids were investigated for the modification using the non destructive 1H NMR, spin–lattice (T 1) relaxation measurement, differential scanning calorimetry. T 1 relaxation measurements showed that the 2 and 2′ amide linked fatty acid chain, –CH in the glucosamine disaccharide of PAO1 lipid A, in an exposed host had a different spin lattice relaxation time compared to an unexposed host and the findings were reconfirmed using in vitro human corneal epithelial cells cell lines. Furthermore, scanning electron microscope and confocal laser scanning microscopy analysis revealed that the P. aeruginosa PAO1 biofilm formation was disturbed in the exposed host condition. The daf-12, daf-16, tol-1, pmk-1, ins-7 and ilys3 immune genes of C. elegans were examined with live bacterial and isolated lipid moiety infection and the expression was found to be highly specific. Overall, the present study revealed that PAO1 modified its 2 and 2′ amide linked fatty acid chain in the lipid A of PAO1 LPS during the exposed host condition.  相似文献   

13.
This article sets out a method for producing chitin and chitosan by Cunninghamella elegans and Rhizopus arrhizus strains using a green metabolic conversion of agroindustrial wastes (corn steep liquor and molasses). The physicochemical characteristics of the biopolymers and antimicrobial activity are described. Chitin and chitosan were extracted by alkali-acid treatment, and characterized by infrared spectroscopy, viscosity and X-ray diffraction. The effectiveness of chitosan from C. elegans and R. arrhizus in inhibiting the growth of Listeria monocytogenes, Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella enterica, Escherichia coli and Yersinia enterocolitica were evaluated by determining the minimum inhibitory concentrations (MIC) and the minimum bactericidal concentrations (MBC). The highest production of biomass (24.60 g/L), chitin (83.20 mg/g) and chitosan (49.31 mg/g) was obtained by R. arrhizus. Chitin and chitosan from both fungi showed a similar degree of deacetylation, respectively of 25% and 82%, crystallinity indices of 33.80% and 32.80% for chitin, and 20.30% and 17.80% for chitosan. Both chitin and chitosan presented similar viscosimetry of 3.79–3.40 cP and low molecular weight of 5.08 × 103 and 4.68 × 103 g/mol. They both showed identical MIC and MBC for all bacteria assayed. These results suggest that: agricultural wastes can be produced in an environmentally friendly way; chitin and chitosan can be produced economically; and that chitosan has antimicrobial potential against pathogenic bacteria.  相似文献   

14.
The alternative sigma factor RpoN regulates many cell functions, such as motility, quorum sensing, and virulence in the opportunistic pathogen Pseudomonas aeruginosa (P. aeruginosa). P. aeruginosa often evolves rpoN-negative variants during the chronic infection in cystic fibrosis patients. It is unclear how RpoN interacts with other regulatory mechanisms to control virulence of P. aeruginosa. In this study, we show that RpoN modulates the function of PqsR, a quorum sensing receptor regulating production of virulence factors including the phenazine pyocyanin. The ∆rpoN mutant is able to synthesize 4-quinolone signal molecule HHQ but unable to activate PqsR and Pseudomonas quinolone signal (pqs) quorum sensing. The ∆rpoN mutant produces minimal level of pyocyanin and is unable to produce the anti-staphylococcal agents. Providing pqsR in trans in the ∆rpoN mutant restores its pqs quorum sensing and virulence factor production to the wild-type level. Our study provides evidence that RpoN has a regulatory effect on P. aeruginosa virulence through modulating the function of the PqsR quorum sensing regulator.  相似文献   

15.
Bacteria belonging to the Pectobacterium genus are the causative agents of the blackleg and soft-rot diseases that affect potato plants and tubers worldwide. In Pectobacterium, the expression of the virulence genes is controlled by quorum-sensing (QS) and N-acylhomoserine lactones (AHLs). In this work, we screened a chemical library of QS-inhibitors (QSIs) and AHL-analogs to find novel QSIs targeting the virulence of Pectobacterium. Four N,N′-bisalkylated imidazolium salts were identified as QSIs; they were active at the μM range. In potato tuber assays, two of them were able to decrease the severity of the symptoms provoked by P. atrosepticum. This work extends the range of the QSIs acting on the Pectobacterium-induced soft-rot disease.  相似文献   

16.
Rhamnolipids produced by Pseudomonas aeruginosa are the most studied biosurfactants due to their potential applications in a wide variety of industries and the high levels of their production. However, even though these biosurfactants are already produced at an industrial scale, the fact that P. aeruginosa is an opportunistic pathogen impose a restriction for its large scale production due to the intrinsic health hazard of the process. Other bacterial species that have been reported to be rhamnolipid producers are the pathogens Burkholderia mallei and B. pseudomallei, and recently the non‐pathogenic B. thailandensis. This short review presents information on rhamnolipid production by bacteria different from P. aeruginosa, as well as some approaches that have been taken to produce rhamnolipids using non‐pathogenic bacteria by genetic engineering of different bacteria. The low frequency of occurrence of rhamnolipid production among natural isolates that are not P. aeruginosa or Burkholderia, as well as the absence of orthologs of the genes involved in rhamnolipid synthesis (rhl genes) among the hundreds of sequenced bacterial genomes, suggest that the rare reported cases of these type of rhamnolipid‐producing bacteria have acquired this trait through horizontal gene transfer either from P. aeruginosa or from a member of Burkholderia.  相似文献   

17.
Quorum sensing (QS) plays an essential role in the production of virulence factors, in biofilm formation and antimicrobial resistance. Consequently, inhibiting QS is being considered a promising target for antipathogenic/anti-virulence therapies. This study aims to screen 2-nitrovinylfuran derivatives structurally related to Furvina (a broad-spectrum antibiotic already used for therapeutic purposes) for their effects on QS and in biofilm prevention/control. Furvina and four 2-nitrovinylfuran derivatives (compounds 1–4) were tested to assess the ability to interfere with QS of Staphylococcus aureus using bioreporter strains (S. aureus ALC1742 and ALC1743). The activity of Furvina and the most promising quorum-sensing inhibitor (QSI) was evaluated in biofilm prevention and in biofilm control (combined with fusidic acid). The biofilms were further characterized in terms of biofilm mass, viability and membrane integrity. Compound 2 caused the most significant QS inhibition with reductions between 60% and 80%. Molecular docking simulations indicate that this compound interacts preferentially with the protein hydrophobic cleft in the LytTR domain of AgrA pocket. Metabolic inactivations of 40% for S. aureus ALC1742 and 20% for S. aureus ALC1743 were reached. A 24 h-old biofilm formed in the presence of the QSI increased the metabolic inactivation by fusidic acid to 80%, for both strains. The overall results highlight the effects of compound 2 as well as the potential of combining QSI with in-use antibiotics for the management of skin and soft tissues infections.  相似文献   

18.
In recent years, the effectiveness of antimicrobials in the treatment of Pseudomonas aeruginosa infections has gradually decreased. This pathogen can be observed in several clinical cases, such as pneumonia, urinary tract infections, sepsis, in immunocompromised hosts, such as neutropenic cancer, burns, and AIDS patients. Furthermore, Pseudomonas aeruginosa causes diseases in both livestock and pets. The highly flexible and versatile genome of P. aeruginosa allows it to have a high rate of pathogenicity. The numerous secreted virulence factors, resulting from its numerous secretion systems, the multi-resistance to different classes of antibiotics, and the ability to produce biofilms are pathogenicity factors that cause numerous problems in the fight against P. aeruginosa infections and that must be better understood for an effective treatment. Infections by P. aeruginosa represent, therefore, a major health problem and, as resistance genes can be disseminated between the microbiotas associated with humans, animals, and the environment, this issue needs be addressed on the basis of an One Health approach. This review intends to bring together and describe in detail the molecular and metabolic pathways in P. aeruginosa’s pathogenesis, to contribute for the development of a more targeted therapy against this pathogen.  相似文献   

19.
Temperature is one of the critical factors affecting gene expression in bacteria. Despite the general interest in the link between bacterial phenotypes and environmental temperature, little is known about temperature-dependent gene expression in plant pathogenic Pectobacterium atrosepticum, a causative agent of potato blackleg and tuber soft rot worldwide. In this study, twenty-nine P. atrosepticum SCRI1043 thermoregulated genes were identified using Tn5-based transposon mutagenesis coupled with an inducible promotorless gusA gene as a reporter. From the pool of 29 genes, 14 were up-regulated at 18 °C, whereas 15 other genes were up-regulated at 28 °C. Among the thermoregulated loci, genes involved in primary bacterial metabolism, membrane-related proteins, fitness-corresponding factors, and several hypothetical proteins were found. The Tn5 mutants were tested for their pathogenicity in planta and for features that are likely to remain important for the pathogen to succeed in the (plant) environment. Five Tn5 mutants expressed visible phenotypes differentiating these mutants from the phenotype of the SCRI1043 wild-type strain. The gene disruptions in the Tn5 transposon mutants caused alterations in bacterial generation time, ability to form a biofilm, production of lipopolysaccharides, and virulence on potato tuber slices. The consequences of environmental temperature on the ability of P. atrosepticum to cause disease symptoms in potato are discussed.  相似文献   

20.
An alternative solution to the cyclical development of new antibiotics is the concept of disarming pathogens without affecting their growth, thereby eliminating the selective pressures that lead to resistant phenotypes. Here, we have employed our previously developed HiTES methodology to identify one such compound against the ESKAPE pathogen Pseudomonas aeruginosa. Rather than induce silent biosynthetic gene clusters, we used HiTES to suppress actively expressed virulence genes. By screening a library of 770 FDA-approved drugs, we identified guanfacine, a clinical hypertension drug, as an antivirulence agent in P. aeruginosa. Follow-up studies showed that guanfacine reduces biofilm formation and pyocycanin production without altering growth. Moreover, we identified a homologue of QseC, a sensor His kinase used by multiple pathogens to turn on virulence, as a target of guanfacine. Our studies suggest that guanfacine might be an attractive antivirulence lead in P. aeruginosa and provide a template for uncovering such molecules by screening for downregulators of actively expressed biosynthetic genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号