首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
含碳硼烷多肽衍生物的设计和应用得到越来越多人们的关注,尤其是作为硼中子俘获治疗(boron neutron capture therapy, BNCT)硼携带剂用于治疗恶性肿瘤极具发展前景。BNCT利用10B与中子俘获反应,放出α粒子杀死肿瘤细胞。作为一种二元靶向疗法,其成功关键就是硼携带剂的靶向性和亲和力的效果,当前如何设计更高效的硼携带剂是BNCT发展的主要问题。多肽作为生物必需物质,增加其衍生物靶向性的同时被肿瘤特异性摄取,是含碳硼烷多肽化合物作为硼携带剂极大的优势。本文首次对已报导的含碳硼烷多肽衍生物进行分类总结,并评估作为硼携带剂应用于中子俘获治疗的发展潜力。对含碳硼烷多肽衍生物的总结,将为新一代硼携带剂设计用于中子俘获治疗发展提供研究动力。  相似文献   

2.
硼中子俘获治疗(boron neutron capture therapy, BNCT)是基于细胞水平的二元靶向新型放射疗法,其治疗机理是利用10B(n,ɑ)7Li*的核裂变反应,产生的α和7Li粒子在细胞尺度内释放所有能量,选择性杀伤肿瘤细胞而对周围正常组织几乎没有影响。相比传统的放疗,BNCT具有精准靶向定位、高生物效应、短疗程的优势,是国际粒子治疗的热点。目前BNCT正在推行临床试验,在瘤内动态、定量监测含10B药物的硼浓度是实现BNCT“增效、减副”的关键要素。本文简要介绍了BNCT治疗原理,总结了BNCT治疗过程中含硼药物的多种监测方法,包括物理测量法、核测量法、化学测量法以及利用新型分子影像技术(如正电子发射断层成像、磁共振成像、光学成像等)原位、动态、定量监测的新方法,分析了各种方法的优势与局限性,并提出未来BNCT治疗过程中硼浓度精准监测的新发展方向,旨在实现BNCT精准治疗。  相似文献   

3.
《同位素》2020,(1)
硼中子俘获疗法(boron neutron capture therapy, BNCT)是一种可以选择性杀伤肿瘤细胞的放射疗法,硼(~(10)B)化合物携带剂注入人体后,会选择性富集于肿瘤细胞,与中子发生俘获反应,释放α粒子和~7Li粒子杀死肿瘤。BNCT以靶向治疗、低毒高效等优势成为了放射治疗领域的新型手段。从上世纪开始,硼中子俘获疗法已在世界各国崭露头角并逐渐发展起来,已经能够成功治疗脑胶质瘤、黑色素瘤等多种疾病。目前,BNCT面临着如何研发创新更高效的含硼药物,建立更为精确的硼剂量测量体系,以及医用中子源如何摆脱核反应堆等问题。本文对BNCT的原理、优势、进展以及所面临的问题进行简要综述与探究。  相似文献   

4.
王淼  童永彭 《同位素》2020,33(1):14-26
硼中子俘获疗法(boron neutron capture therapy,BNCT)是一种可以选择性杀伤肿瘤细胞的放射疗法,硼(10 B)化合物携带剂注入人体后,会选择性富集于肿瘤细胞,与中子发生俘获反应,释放α粒子和7Li粒子杀死肿瘤。BNCT以靶向治疗、低毒高效等优势成为了放射治疗领域的新型手段。从上世纪开始,硼中子俘获疗法已在世界各国崭露头角并逐渐发展起来,已经能够成功治疗脑胶质瘤、黑色素瘤等多种疾病。目前,BNCT面临着如何研发创新更高效的含硼药物,建立更为精确的硼剂量测量体系,以及医用中子源如何摆脱核反应堆等问题。本文对BNCT的原理、优势、进展以及所面临的问题进行简要综述与探究。  相似文献   

5.
硼中子俘获治疗   总被引:3,自引:0,他引:3  
罗全勇  朱瑞森 《同位素》2004,17(3):174-177,182
硼中子俘获治疗(BNCT)的基本原理是应用热中子照射靶向聚集在肿瘤部位的^10B,^10B俘获中子后产生α粒子和^7Li,α粒子和^7Li杀灭肿瘤细胞而起到治疗作用。BNCT在临床上主要用于神经胶质瘤和黑色素瘤的治疗。文章主要对有关BNCT的基础及临床研究进行了简要综述,内容包括BNCT的基本原理、^10B在肿瘤细胞的聚集、中子源、实验研究现状以及BNCT面临的挑战与问题等。  相似文献   

6.
介绍了硼中子俘获疗法(BNCT)治疗肿瘤的原理及特点,及其相关技术研究进展;从5个方面提出了建议,即寻求理想的核素化合物,研究精确的剂量测算体系,开发更合理的中子源,开发更好的硼携带剂,将BNCT与其它疗法结合以提高疗效。  相似文献   

7.
为得出硼中子俘获治疗(BNCT)中不同能量中子在含肿瘤Snyder修正头部模型内的深度-剂量曲线,籍以进一步理解BNCT原理,优化BNCT治疗中子源的能谱分布,本文利用MCNP模拟计算0.025 3 eV、1 eV、1 keV、10 keV、100 keV、1 MeV和混合能量的超热中子源在含肿瘤Snyder修正头部模型内的硼剂量、热中子剂量、超热和快中子剂量以及次级光子剂量组分的深度-剂量分布,并在此基础上得到总的相对生物学剂量的深度-剂量分布,以判断不同能量组中子源在BNCT中的优劣。结果表明,热中子头皮浅表处硼剂量高于肿瘤区硼剂量;快中子源硼剂量小,但其剂量组分中超热和快中子剂量过大;超热中子具有一定的穿透性,在脑深部肿瘤区形成了较高的硼剂量和总的相对生物学剂量。说明超热中子具有良好的BNCT治疗效果,热中子和快中子不适宜用于脑部BNCT治疗。  相似文献   

8.
叙述了国际上硼中子俘获疗法治疗肿瘤(BNCT)的历史、现状和今后的设想,重点描述了BNCT的基本原理和中子源装置,可供从事BNCT工作的同志们参考。  相似文献   

9.
硼中子俘获疗法(BNCT)是一种新型的放疗方法,它是将与肿瘤有特异性亲合力的加B化合物(硼携带剂)注入人体,经中子束局部照射使聚集在肿瘤组织中的10B与热中子发生核反应,生成Li与α粒子,这些粒子均属高传能线密度(LET)射线,具有能量高和射程短的特点,其运动空间内发生的电离反应可杀伤吸收硼化物的瘤细胞及与之相邻的细胞,而对正常组织的损害甚小。  相似文献   

10.
对-二羟基硼酰苯丙氨酸(BPA)由于具有在肿瘤处富集的性质而用于硼中子俘获治疗(BNCT)。按文献方法合成了BPA,并用^99Tc^m对其标记,生成一种新的锝包合型螯合物BATO(Boronic acid adducts of technetium dioxime)配合物,并进行了^99Tc^m-DMGBPA配合物在小鼠体内的生物分布研究。实验结果表明,^99Tc^m-DMGBPA可以选择性富集在肿瘤处,并且清除较慢,在肿瘤中的放射性活度明显高于肌肉和心、肺、血液等组织。随着时间的延长,肿瘤/正常组织的摄入比在不断增加。最大值出现在摄入后4h,这时的R(肿瘤/肌肉)为6.0,R(肿瘤/血液)为4.5,R(肿瘤/心)为6.0,R(肿瘤/肺)为3.0,R(肿瘤/肝)为0.41,R(肿瘤/肾)为0.134。通过分子轨道理论计算推测了^99Tc^m-DMGBPA配合物可能的结构。  相似文献   

11.
正中子俘获治疗法是采用热中子束和亲肿瘤药物相结合的一种二元肿瘤治疗方法,其中亲肿瘤药物研究较多的是掺硼(~(10)B)的药物,其性能基本达到临床试治的要求,称为BNCT。对于用于BNCT治疗的中子源,IAEA所要求的射束强度为:中子为超  相似文献   

12.
硼中子俘获治疗已经成为当前治疗恶性黑色素瘤、头颈部肿瘤等恶性肿瘤的有效手段之一。10B在细胞尺度上不均匀分布将直接影响到对肿瘤细胞失活剂量的控制。为研究含硼化合物在细胞内空间上分布不同对靶区细胞微剂量的影响,本工作利用Monte-Carlo工具包开发了用于计算10B(n,α)7Li产生的α与7Li对靶区剂量的模拟程序α-Li Version 1.0。通过此程序,计算了2种细胞尺寸、8种α粒子能量、3种源分布方式的细胞S值,并与MIRD委员会解析算法的计算结果进行对比,两者差异在1%以内;对不同细胞核半径、不同细胞半径及不同源位置等条件下的3 420种模型进行了模拟计算,证明了α粒子和7Li粒子在细胞内的S值存在差异性;最终获得的10B(n,α)7Li反应的细胞S值数据库,可用于细胞尺度10B不均匀分布情况下的高精度微剂量学计算。  相似文献   

13.
硼中子俘获治疗(BNCT)中亚细胞微观10B的分布对确定细胞凋亡概率和细胞核内的沉积剂量有重要意义。本工作研究采用CR-39固体径迹探测器测量亚细胞结构中10B浓度的方法,通过激光标记、光电镜扫描及图像重建方式获得了生物切片中各细胞器的径迹密度,在ICP-AES宏观测量基础上计算出相应细胞器的浓度。实验结果表明,固体径迹探测器与激光标记和电镜扫描结合可实现亚细胞结构中微观10B分布浓度的测量。  相似文献   

14.
目前,对硼中子俘获治疗(BNCT)进行剂量计算时普遍使用Synder模型,本文依据中国人的头部解剖特征,对该模型进行重建,建立了修正Synder模型。在该模型基础上,利用MCNP程序编制出放射性治疗软件,计算了无含硼药物和有含硼药物时不同能量的中子在头部的剂量深度分布,并对计算结果进行比较分析。计算结果为我国即将进行的BNCT临床治疗研究有一定的助益。  相似文献   

15.
卢宇  李文艺  徐照  李桃生 《核技术》2022,45(3):29-35
随着加速器技术的发展,基于加速器的硼中子俘获治疗装置越来越受到国内外关注。为了研究基于能量为14 MeV、流强为80μA的回旋质子加速器获得硼中子俘获治疗(Boron Neutron Capture Therapy,BNCT)中子源的可能性,利用Geant4软件对中子产生靶以及束流整形组件进行了优化设计,旨在获得理想的超热中子束实验终端。由于加速器的流强较低,增设了天然铀作为中子倍增器以提高中子注量。经过对铍靶、天然铀增殖层、AlF3和TiF3复合慢化体、热中子吸收层和γ屏蔽层等进行优化设计,在束流出口处能够获得超热中子占比高达95.6%,注量率可达6.26×107n·cm-2·s-1的中子源终端。该方案可初步用于加速器BNCT中子源实验终端的技术验证。  相似文献   

16.
正【国际原子能机构网站2020年6月24日报道】国际原子能机构(IAEA)近日与日本冈山大学签署为期三年的合作协议,为双方在硼中子俘获疗法(BNCT)领域加强合作建立了框架。BNCT是一种具备大规模商用前景的癌症放射疗法:先把含硼靶向药物注入人体,待药物在癌细胞内积累到一定程度时,用核反应堆或加速器中子源产生的中子射线照射患者病灶处,中子与硼元素发生核反应,产生巨大能量,杀死硼元素所在的癌细胞,而正常细胞极少摄  相似文献   

17.
金属 有机骨架(MOFs)材料作为吸附剂具有吸附硼同位素的潜力,为系统研究硼同位素效应,本文建立测定硼酸溶液中硼浓度的自动电位滴定法,以三种MOFs为例测定其对硼同位素的分离效果。采用弱酸强化法,甘露醇用量为理论用量的4倍,硼酸标准物质的测量值与参考值之差最小(-0.000 13 g),方法的测量不确定度为0.000 2~0.000 8,测量精度为0.10%~0.40%,方法有效、可靠。应用建立的自动电位滴定法测定吸附前、后硼酸溶液的硼浓度,用MC-ICP-MS测定吸附前、后硼酸溶液的硼同位素丰度比10B/11B,以Cu-MOF-OCH3、UiO-66-NH2、MIL-101(Cr)-2,3-OH三种MOFs材料为例,测定其对硼同位素的静态分离效果。结果表明,Cu-MOF-OCH3、UiO-66-NH2和MIL-101(Cr)-2,3-OH对硼同位素的分离因子(S)分别为1.066、1.037和1.079,均大于商用树脂Amberlite IR743的S(1.027),其中,Cu-MOF-OCH310B的10/11S>1,UiO-66-NH2、MIL-101(Cr)-2,3-OH对11B的11/10S>1。本结果可为系统研究MOFs材料对硼同位素的分离效果提供参考。  相似文献   

18.
医院中子照射器是基于微型反应堆而设计的专门用于硼中子俘获治疗(BNCT)的核反应堆装置,其额定功率为30 kW。在堆芯相对两侧分别设有一条热中子束流和超热中子束流用于病人照射,在热中子束流内引出一条实验用热中子束流,用于瞬发γ法测量病人血硼浓度。本工作利用235U裂变靶和白云母探测片测量了热、超热和实验用热中子束流出口处的热中子绝对注量率。结果显示,在30 kW额定功率运行时,热、超热和实验用热中子束流出口处的热中子注量率分别为1.67×109、2.44×107和3.03×106 cm-2•s-1。以上结果达到了BNCT设计要求,并能满足瞬发γ测量血硼浓度的要求。  相似文献   

19.
正基于加速器的硼中子俘获治疗(AB-BNCT)的基本原理是利用加速器输出带电粒子,与靶核反应产生中子,将慢化后的热中子照射到注射了~(10)B药物的肿瘤部位,利用10B和热中子发生的俘获反应释放的能量杀死肿瘤细胞。此治疗方法具有有选择性的杀死癌细胞而不损坏健康组织的优点。剂量测量是其中一项重要内容:能够验证  相似文献   

20.
应用MCNP 4B程序模拟计算了硼中子俘获治疗(BNCT)人体头颅等效模型开颅时的宏观吸收剂量分布.采用含有肿瘤体的双椭球结构的等效模型,模拟了深部肿瘤、浅部肿瘤和表层肿瘤3个算例,计算了正常组织及肿瘤体内的宏观吸收剂量分布.计算结果表明,照射后部分网格的吸收剂量低于治疗标准18 Gy,但在同一网格中,肿瘤越靠近表层,吸收剂量越大,治疗效果越好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号