首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activation of the endocannabinoid system controls the release of many neurotransmitters involved in the brain reward pathways, including glutamate. Both endocannabinoid and glutamate systems are crucial for alcohol relapse. In the present study, we hypothesize that N-methyl-D-aspartate (NMDA) glutamate receptors regulate the ability of a priming dose of WIN 55,212-2 to cross-reinstate ethanol-induced conditioned place preference (CPP). To test this hypothesis, ethanol-induced (1.0 g/kg, 10% w/v, i.p.) CPP (unbiased method) was established using male adult Wistar rats. After CPP extinction, one group of animals received WIN 55,212-2 (1.0 and 2.0 mg/kg, i.p.), the cannabinoid receptor 1 (CB1) agonist, or ethanol, and the other group received memantine (3.0 or 10 mg/kg, i.p.), the NMDA antagonist and WIN 55,212-2 on the reinstatement day. Our results showed that a priming injection of WIN 55,212-2 (2.0 mg/kg, i.p.) reinstated (cross-reinstated) ethanol-induced CPP with similar efficacy to ethanol. Memantine (3.0 or 10 mg/kg, i.p.) pretreatment blocked this WIN 55,212-2 effect. Furthermore, our experiments indicated that ethanol withdrawal (7 days withdrawal after 10 days ethanol administration) down-regulated the CNR1 (encoding CB1), GRIN1/2A (encoding GluN1 and GluN2A subunit of the NMDA receptor) genes expression in the prefrontal cortex and dorsal striatum, but up-regulated these in the hippocampus, confirming the involvement of these receptors in ethanol rewarding effects. Thus, our results show that the endocannabinoid system is involved in the motivational properties of ethanol, and glutamate may control cannabinoid induced relapse into ethanol seeking behavior.  相似文献   

2.
A pharmacological and genetic blockade of the dopamine D3 receptor (D3R) has shown to be neuroprotective in models of Parkinson’s disease (PD). The anxiolytic drug buspirone, a serotonin receptor 1A agonist, also functions as a potent D3R antagonist. To test if buspirone elicited neuroprotective activities, C57BL/6 mice were subjected to rotenone treatment (10mg/kg i.p for 21 days) to induce PD-like pathology and were co-treated with increasing dosages of buspirone (1, 3, or 10 mg/kg i.p.) to determine if the drug could prevent rotenone-induced damage to the central nervous system (CNS). We found that high dosages of buspirone prevented the behavioural deficits caused by rotenone in the open field test. Molecular and histological analyses confirmed that 10 mg/kg of buspirone prevented the degeneration of TH-positive neurons. Buspirone attenuated the induction of interleukin-1β and interleukin-6 expression by rotenone, and this was paralleled by the upregulation of arginase-1, brain-derived neurotrophic factor (BDNF), and activity-dependent neuroprotective protein (ADNP) in the midbrain, striatum, prefrontal cortex, amygdala, and hippocampus. Buspirone treatment also improved mitochondrial function and antioxidant activities. Lastly, the drug prevented the disruptions in the expression of two neuroprotective peptides, pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP). These results pinpoint the neuroprotective efficacy of buspirone against rotenone toxicity, suggesting its potential use as a therapeutic agent in neurodegenerative and neuroinflammatory diseases, such as PD.  相似文献   

3.
Serotonin (5-HT) is important in some nicotine actions in the CNS. Among all the 5-HT receptors (5-HTRs), the 5-HT2CR has emerged as a promising drug target for smoking cessation. The 5-HT2CRs within the lateral habenula (LHb) may be crucial for nicotine addiction. Here we showed that after acute nicotine tartrate (2 mg/kg, i.p.) exposure, the 5-HT2CR agonist Ro 60-0175 (5–640 µg/kg, i.v.) increased the electrical activity of 42% of the LHb recorded neurons in vivo in rats. Conversely, after chronic nicotine treatment (6 mg/kg/day, i.p., for 14 days), Ro 60-0175 was incapable of affecting the LHb neuronal discharge. Moreover, acute nicotine exposure increased the 5-HT2CR-immunoreactive (IR) area while decreasing the number of 5-HT2CR-IR neurons in the LHb. On the other hand, chronic nicotine increased both the 5-HT2CR-IR area and 5-HT2CR-IR LHb neurons in the LHb. Western blot analysis confirmed these findings and further revealed an increase of 5-HT2CR expression in the medial prefrontal cortex after chronic nicotine exposure not detected by the immunohistochemistry. Altogether, these data show that acute and chronic nicotine exposure differentially affect the central 5-HT2CR function mainly in the LHb and this may be relevant in nicotine addiction and its treatment.  相似文献   

4.
Neuropathic pain is a significant problem with few effective treatments lacking adverse effects. The sigma-1 receptor (S1R) is a potential therapeutic target for neuropathic pain, as antagonists for this receptor effectively ameliorate pain in both preclinical and clinical studies. The current research examines the antinociceptive and anti-allodynic efficacy of SI 1/28, a recently reported benzylpiperazine derivative and analog of the S1R antagonist SI 1/13, that was 423-fold more selective for S1R over the sigma-2 receptor (S2R). In addition, possible liabilities of respiration, sedation, and drug reinforcement caused by SI 1/28 have been evaluated. Inflammatory and chemical nociception, chronic nerve constriction injury (CCI) induced mechanical allodynia, and adverse effects of sedation in a rotarod assay, conditioned place preference (CPP), and changes in breath rate and locomotor activity were assessed after i.p. administration of SI 1/28. Pretreatment with SI 1/28 produced dose-dependent antinociception in the formalin test, with an ED50 (and 95% C.I.) value of 13.2 (7.42–28.3) mg/kg, i.p. Likewise, SI 1/28 produced dose-dependent antinociception against visceral nociception and anti-allodynia against CCI-induced neuropathic pain. SI 1/28 demonstrated no impairment of locomotor activity, conditioned place preference, or respiratory depression. In summary, SI 1/28 proved efficacious in the treatment of acute inflammatory pain and chronic neuropathy without liabilities at therapeutic doses, supporting the development of S1R antagonists as therapeutics for chronic pain.  相似文献   

5.
Celastrol, a major active ingredient of Chinese herb Tripterygium wilfordii Hook. f. (thunder god vine), has exhibited a broad spectrum of pharmacological activities, including anti-inflammation, anti-cancer and immunosuppression. In the present study, we used animal models of inflammatory pain and neuropathic pain, generated by carrageenan injection and spared nerve injury (SNI), respectively, to evaluate the effect of celastrol and to address the mechanisms underlying pain processing. Intraperitoneal (i.p.) injection of celastrol produced a dose-dependent inhibition of carrageenan-induced edema and allodynia. Real-time PCR analysis showed that celastrol (0.3 mg/kg, i.p.) significantly reduced mRNA expressions of inflammatory cytokines, TNF-α, IL-6, IL-1β, in carrageenan-injected mice. In SNI mice, pain behavior studies showed that celastrol (1 mg/kg, i.p.) effectively prevented the hypersensitivity of mechanical nociceptive response on the third day post-surgery and the seventh day post-surgery. Furthermore, the anti-hyperalgesic effects of celastrol in carrageenan-injected mice and SNI mice were reversed by SR144528 (1 mg/kg, i.p.), a specific cannabinoid receptor-2 (CB2) receptor antagonist, but not by SR141716 (1 mg/kg, i.p.), a specific cannabinoid receptor-1 (CB1) receptor antagonist. Taken together, our results demonstrate the analgesia effects of celastrol through CB2 signaling and propose the potential of exploiting celastrol as a novel candidate for pain relief.  相似文献   

6.
Sigma1 Receptor (S1R) is involved in oxidative stress, since its activation is triggered by oxidative or endoplasmic reticulum stress. Since specific aquaporins (AQP), called peroxiporins, play a relevant role in controlling H2O2 permeability and ensure reactive oxygen species wasted during oxidative stress, we studied the effect of S1R modulators on AQP-dependent water and hydrogen peroxide permeability in the presence and in the absence of oxidative stress. Applying stopped-flow light scattering and fluorescent probe methods, water and hydrogen peroxide permeability in HeLa cells have been studied. Results evidenced that S1R agonists can restore water permeability in heat-stressed cells and the co-administration with a S1R antagonist totally counteracted the ability to restore the water permeability. Moreover, compounds were able to counteract the oxidative stress of HeLa cells specifically knocked down for S1R. Taken together these results support the hypothesis that the antioxidant mechanism is mediated by both S1R and AQP-mediated H2O2 permeability. The finding that small molecules can act on both S1R and AQP-mediated H2O2 permeability opens a new direction toward the identification of innovative drugs able to regulate cell survival during oxidative stress in pathologic conditions, such as cancer and degenerative diseases.  相似文献   

7.
Enantioselective membrane was prepared using ethyl cellulose (EC) as membrane material. The flux and permselective properties of membrane using aqueous solution of (R,S)‐2‐phenyl‐1‐propanol as feed solution was studied. The employed membrane process was a pressure driven process. All kinds of important conditions including preparation and operation of membranes were investigated in this experimentation. When the membrane was prepared with 18 wt % EC, 20 wt % N,N‐dimethylformamide in casting solution, 13 min evaporation time and 0°C temperature of water bath for the gelation of the membrane, and the operating pressure and feed solution of (R,S)‐2‐phenyl‐1‐propanol were 0.2 MPa and 1.5 mg/mL, respectively, over 90% of enantiomeric excess (e.e.) and 44.2 (mg/m2 h) of flux were obtained. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
Vincristine (VCR) is a widely used chemotherapy drug that induced peripheral painful neuropathy. Yet, it still lacks an ideal therapeutic strategy. The transient receptor potential (TRP) channels, purinergic receptor (P2Y), and mitogen-activated protein kinase (MAPK) signaling play a crucial role in the pathogenesis of neuropathic pain. Withametelin (WMT), a potential Phytosteroid isolated from datura innoxa, exhibits remarkable neuroprotective properties. The present investigation was designed to explore the effect of withametelin on VCR-induced neuropathic pain and its underlying molecular mechanism. Initially, the neuroprotective potential of WMT was confirmed against hydrogen peroxide (H2O2)-induced PC12 cells. To develop potential candidates for neuropathic pain treatment, a VCR-induced neuropathic pain model was established. Vincristine (75 μg/kg) was administered intraperitoneally (i.p.) for 10 consecutive days (day 1–10) for the induction of neuropathic pain. Gabapentin (GBP) (60 mg/kg, i.p.) and withametelin (0.1 and 1 mg/kg i.p.) treatments were given after the completion of VCR injection on the 11th day up to 21 days. The results revealed that WMT significantly reduced VCR-induced pain hypersensitivity, including mechanical allodynia, cold allodynia, and thermal hyperalgesia. It reversed the VCR-induced histopathological changes in the brain, spinal cord, and sciatic nerve. It inhibited VCR-induced changes in the biochemical composition of the myelin sheath of the sciatic nerve. It markedly downregulated the expression levels of TRPV1 (transient receptor potential vanilloid 1); TRPM8 (Transient receptor potential melastatin 8); and P2Y nociceptors and MAPKs signaling, including ERK (Extracellular Signal-Regulated Kinase), JNK (c-Jun N-terminal kinase), and p-38 in the spinal cord. It suppressed apoptosis by regulating Bax (Bcl2-associated X-protein), Bcl-2 (B-cell-lymphoma-2), and Caspase-3 expression. It considerably attenuated inflammatory cytokines, oxidative stress, and genotoxicity. This study suggests that WMT treatment suppressed vincristine-induced neuropathic pain by targeting the TRPV1/TRPM8/P2Y nociceptors and MAPK signaling.  相似文献   

9.
The present study was designed to investigate the effects of cyclooxygenase (COX) inhibitors in combination with taxol on the expression of cyclin D1 and Ki-67 in human ovarian SKOV-3 carcinoma cells xenograft-bearing mice. The animals were treated with 100 mg/kg celecoxib (a COX-2 selective inhibitor) alone, 3 mg/kg SC-560 (a COX-1 selective inhibitor) alone by gavage twice a day, 20 mg/kg taxol alone by intraperitoneally (i.p.) once a week, or celecoxib/taxol, SC-560/celecoxib, SC-560/taxol or SC-560/celecoxib/taxol, for three weeks. To test the mechanism of the combination treatment, the index of cell proliferation and expression of cyclin D1 in tumor tissues were determined by immunohistochemistry. The mean tumor volume in the treated groups was significantly lower than control (p < 0.05), and in the three-drug combination group, tumor volume was reduced by 58.27% (p < 0.01); downregulated cell proliferation and cyclin D1 expression were statistically significant compared with those of the control group (both p < 0.01). This study suggests that the effects of COX selective inhibitors on the growth of tumors and decreased cell proliferation in a SKOV-3 cells mouse xenograft model were similar to taxol. The three-drug combination showing a better decreasing tendency in growth-inhibitory effect during the experiment may have been caused by suppressing cyclin D1 expression.  相似文献   

10.
Background: Status epilepticus (SE) is a neurological disorder characterized by a prolonged epileptic activity followed by subsequent epileptogenic processes. The aim of the present study was to evaluate the early effects of topiramate (TPM) and lacosamide (LCM) treatment on oxidative stress and inflammatory damage in a model of pilocarpine-induced SE. Methods: Male Wistar rats were randomly divided into six groups and the two antiepileptic drugs (AEDs), TPM (40 and 80 mg/kg, i.p.) and LCM (10 and 30 mg/kg, i.p.), were injected three times repeatedly after pilocarpine administration. Rats were sacrificed 24 h post-SE and several parameters of oxidative stress and inflammatory response have been explored in the hippocampus. Results: The two drugs TPM and LCM, in both doses used, succeeded in attenuating the number of motor seizures compared to the SE-veh group 30 min after administration. Pilocarpine-induced SE decreased the superoxide dismutase (SOD) activity and reduced glutathione (GSH) levels while increasing the catalase (CAT) activity, malondialdehyde (MDA), and IL-1β levels compared to the control group. Groups with SE did not affect the TNF-α levels. The treatment with a higher dose of 30 mg/kg LCM restored to control level the SOD activity in the SE group. The two AEDs, in both doses applied, also normalized the CAT activity and MDA levels to control values. In conclusion, we suggest that the antioxidant effect of TPM and LCM might contribute to their anticonvulsant effect against pilocarpine-induced SE, whereas their weak anti-inflammatory effect in the hippocampus is a consequence of reduced SE severity.  相似文献   

11.
We recently reported a new class of carbamate derivatives as anticonvulsants. Among these, 3-methylpentyl(4-sulfamoylphenyl)carbamate (MSPC) stood out as the most potent compound with ED50 values of 13 mg/kg (i.p.) and 28 mg/kg (p.o.) in the rat maximal electroshock test (MES). 3-Methylpropyl(4-sulfamoylphenyl)carbamate (MBPC), reported and characterized here, is an MSPC analogous compound with two less aliphatic carbon atoms in its structure. As both MSPC and MBPC are chiral compounds, here, we studied the carbonic anhydrase inhibitory and anticonvulsant action of both MBPC enantiomers in comparison to those of MSPC as well as their pharmacokinetic properties. Racemic-MBPC and its enantiomers showed anticonvulsant activity in the rat maximal electroshock (MES) test with ED50 values in the range of 19–39 mg/kg. (R)-MBPC had a 65% higher clearance than its enantiomer and, consequently, a lower plasma exposure (AUC) than (S)-MSBC and racemic-MSBC. Nevertheless, (S)-MBPC had a slightly better brain permeability than (R)-MBPC with a brain-to-plasma (AUC) ratio of 1.32 (S-enantiomer), 1.49 (racemate), and 1.27 (R-enantiomer). This may contribute to its better anticonvulsant-ED50 value. The clearance of MBPC enantiomers was more enantioselective than the brain permeability and MES-ED50 values, suggesting that their anticonvulsant activity might be due to multiple mechanisms of action.  相似文献   

12.
目的:采用HPLC法同步测定三七粉中人参皂苷Rg1、Rb1及三七皂苷R1含量。方法:采用SGE protecol C18(5μm,4.6×250mm)色谱柱,流动相为乙腈—水梯度洗脱(0~12min,19∶81;12~60min,19~36∶81~64),检测波长为203nm,流速1.0mL/min,进样量20μL。结果:人参皂苷Rg1、人参皂苷Rb1、三七皂苷R1分别在25.625~430mg/L、26.875~410mg/L、10.625~170mg/L范围呈线性,相关系数r分别为0.9999、0.9998、0.9996;该方法重复性及回收率均符合要求。结论:本法用于同步测定三七粉中人参皂苷Rg1、Rb1及三七皂苷R1的含量,具有简便、准确、高效等特点。  相似文献   

13.
This study was designed to determine the effect of acute caffeine (CAF) administration, which exerts a broad spectrum of anti-inflammatory activity, on the synthesis of pro-inflammatory cytokines and their receptors in the hypothalamus and choroid plexus (ChP) during acute inflammation caused by the injection of bacterial endotoxin—lipopolysaccharide (LPS). The experiment was performed on 24 female sheep randomly divided into four groups: control; LPS treated (iv.; 400 ng/kg of body mass (bm.)); CAF treated (iv.; 30 mg/kg of bm.); and LPS and CAF treated. The animals were euthanized 3 h after the treatment. It was found that acute administration of CAF suppressed the synthesis of interleukin (IL-1β) and tumor necrosis factor (TNF)α, but did not influence IL-6, in the hypothalamus during LPS-induced inflammation. The injection of CAF reduced the LPS-induced expression of TNF mRNA in the ChP. CAF lowered the gene expression of IL-6 cytokine family signal transducer (IL6ST) and TNF receptor superfamily member 1A (TNFRSF1) in the hypothalamus and IL-1 type II receptor (IL1R2) in the ChP. Our study on the sheep model suggests that CAF may attenuate the inflammatory response at the hypothalamic level and partly influence the inflammatory signal generated by the ChP cells. This suggests the potential of CAF to suppress neuroinflammatory processes induced by peripheral immune/inflammatory challenges.  相似文献   

14.
Although epoxyeicosatrienoic acid (EET) analogs have performed well in several acute and chronic kidney disease models, targeted delivery of EET analogs to the kidney can be reasonably expected to reduce the level of drug needed to achieve a therapeutic effect and obviate possible side effects. For EET analog kidney-targeted delivery, we conjugated a stable EET analog to folic acid via a PEG-diamine linker. Next, we compared the kidney targeted EET analog, EET-F01, to a well-studied EET analog, EET-A. EET-A or EET-F01 was infused i.v. and plasma and kidney tissue collected. EET-A was detected in the plasma but was undetectable in the kidney. On the other hand, EET-F01 was detected in the plasma and kidney. Experiments were conducted to compare the efficacy of EET-F01 and EET-A for decreasing cisplatin nephrotoxicity. Cisplatin was administered to WKY rats treated with vehicle, EET-A (10 mg/kg i.p.) or EET-F01 (20 mg/kg or 2 mg/kg i.p.). Cisplatin increased kidney injury markers, viz., blood urea nitrogen (BUN), N-acetyl-β-(D)-glucosaminidase (NAG), kidney injury molecule-1 (KIM-1), and thiobarbituric acid reactive substances (TBARS). EET-F01 was as effective as EET-A in decreasing BUN, NAG, KIM-1, TBARS, and renal histological injury caused by cisplatin. Despite its almost 2×-greater molecular weight compared with EET-A, EET-F01 was comparably effective in decreasing renal injury at a 10-fold w/w lower dose. EET-F01 decreased cisplatin nephrotoxicity by reducing oxidative stress and inflammation. These data demonstrate that EET-F01 targets the kidney, allows for a lower effective dose, and combats cisplatin nephrotoxicity. In conclusion, we have developed a kidney targeted EET analog, EET-F01, that demonstrates excellent potential as a therapeutic for kidney diseases.  相似文献   

15.
Calorie restriction (CR) inhibits prostate cancer progression, partially through modulation of the IGF axis. IGF-1 receptor (IGF-1R) blockade reduces prostate cancer xenograft growth. We hypothesized that combining calorie restriction with IGF-1R blockade would have an additive effect on prostate cancer growth. Severe combined immunodeficient mice were subcutaneously injected with 22Rv1 cells and randomized to: (1) Ad libitum feeding/intraperitoneal saline (Ad-lib); (2) Ad-lib/20 mg/kg twice weekly, intraperitoneal ganitumab [anti-IGF-1R antibody (Ad-lib/Ab)]; (3) 40% calorie restriction/intraperitoneal saline (CR); (4) CR/ intraperitoneal ganitumab, (CR/Ab). CR and ganitumab treatment were initiated one week after tumor injection. Euthanasia occurred 19 days post treatment. Results showed that CR alone decreased final tumor weight, plasma insulin and IGF-1 levels, and increased apoptosis. Ganitumab therapy alone reduced tumor growth but had no effect on final tumor weight. The combination therapy (CR/Ab) further decreased final tumor weight and proliferation, increased apoptosis in comparison to the Ad-lib group, and lowered plasma insulin levels relative to the Ad-lib and Ad-lib/Ab groups. Tumor AKT activation directly correlated with plasma IGF-1 levels. In conclusion, whereas ganitumab therapy modestly affected 22Rv1 tumor growth, combining IGF-1R blockade with calorie restriction resulted in a significant decrease in final tumor weight and improved metabolic profile.  相似文献   

16.
Previous studies have demonstrated that pioglitazone, a peroxisome proliferator-activated receptor gamma (PPARγ) agonist, inhibits ischemia-induced brain injury. The present study was conducted to examine whether pioglitazone can reduce impairment of behavioral deficits mediated by inflammatory-induced brain white matter injury in neonatal rats. Intraperitoneal (i.p.) injection of lipopolysaccharide (LPS, 2 mg/kg) was administered to Sprague–Dawley rat pups on postnatal day 5 (P5), and i.p. administration of pioglitazone (20 mg/kg) or vehicle was performed 5 min after LPS injection. Sensorimotor behavioral tests were performed 24 h after LPS exposure, and changes in biochemistry of the brain was examined after these tests. The results show that systemic LPS exposure resulted in impaired sensorimotor behavioral performance, reduction of oligodendrocytes and mitochondrial activity, and increases in lipid peroxidation and brain inflammation, as indicated by the increment of interleukin-1β (IL-1β) levels and number of activated microglia in the neonatal rat brain. Pioglitazone treatment significantly improved LPS-induced neurobehavioral and physiological disturbances including the loss of body weight, hypothermia, righting reflex, wire-hanging maneuver, negative geotaxis, and hind-limb suspension in neonatal rats. The neuroprotective effect of pioglitazone against the loss of oligodendrocytes and mitochondrial activity was associated with attenuation of LPS-induced increment of thiobarbituric acid reactive substances (TBARS) content, IL-1β levels and number of activated microglia in neonatal rats. Our results show that pioglitazone prevents neurobehavioral disturbances induced by systemic LPS exposure in neonatal rats, and its neuroprotective effects are associated with its impact on microglial activation, IL-1β induction, lipid peroxidation, oligodendrocyte production and mitochondrial activity.  相似文献   

17.
18.
Cisplatin (Cis-diamminedichloroplatinum II, CP) is an important chemotherapeutic agent, useful in the treatment of several cancers, but with several side effects such as nephrotoxicity. The present study investigated the possible protective effect of selenium (Se) against CP-induced oxidative stress in the rat kidneys. Male Wistar albino rats were injected with a single dose of cisplatin (7 mg CP/kg b.m., i.p.) and selenium (6 mg Se/kg b.m, as Na(2)SeO(3), i.p.), alone or in combination. The obtained results showed that CP increased lipid peroxidation (LPO) and decreased reduced glutathione (GSH) concentrations, suggesting the CP-induced oxidative stress, while Se treatment reversed this change to control values. Acute intoxication of rats with CP was followed by statistically significant decreased activity of antioxidant defense enzymes: superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GR) and glutathione-S-transferase (GST). Treatment with Se reversed CP-induced alterations of antioxidant defense enzyme activities and significantly prevented the CP-induced kidney damage.  相似文献   

19.
Four 1-β-D-arabinofuranosylcytosine conjugates (ara-C) (1a, b and 2a, b) ofsn−1 andsn−3 isomers of 1-O-octadecyl-2-O-palmitoylglycerol and its 1-S-alkyl analogue have been synthesized, and their antitumor activity against L1210 lymphoid leukemia in mice were compared with those of the previous conjugates (3a, b) of racemates in order to determine the significance of chirality of the glycerol moieties for activity. Administration (i.p.) of a single dose (300 mg/kg) of conjugates ofsn−1 (1a),sn−3 (2a) andrac (3a) isomers of the ether lipid increased lifespan of i.p. implanted L1210 lymphoid leukemic DBA/2J mice by 169, 175 and 236%, respectively. Thesn−1 (1b),sn−3 (2b), andrac (3b) isomers of the thioether lipid with a single dose of 300 mg/kg produced an increase in lifespan values of 238, 263 and 250%, respectively. The results indicate that chirality of the glycerol moieties appears not to be critical for the activity, and racemates 3a and 3b are promising prodrugs of ara-C for further clinical investigations. This material was presented in part at the 81 st Annual Meeting of the American Association for Cancer Research in Washington, D.C., May, 1990 (Abstract No. 2493).  相似文献   

20.
Antinociceptive and anti-inflammatory activities of the ethanol extract from Annona muricata L. leaves were investigated in animal models. The extract delivered per oral route (p.o.) reduced the number of abdominal contortions by 14.42% (at a dose of 200 mg/kg) and 41.41% (400 mg/kg). Doses of 200 and 400 mg/kg (p.o) inhibited both phases of the time paw licking: first phase (23.67% and 45.02%) and the second phase (30.09% and 50.02%), respectively. The extract (p.o.) increased the reaction time on a hot plate at doses of 200 (30.77% and 37.04%) and 400 mg/kg (82.61% and 96.30%) after 60 and 90 minutes of treatment, respectively. The paw edema was reduced by the ethanol extract (p.o.) at doses of 200 (23.16% and 29.33%) and 400 mg/kg (29.50% and 37.33%) after 3 to 4 h of application of carrageenan, respectively. Doses of 200 and 400 mg/kg (p.o.), administered 4 h before the carrageenan injection, reduced the exudate volume (29.25 and 45.74%) and leukocyte migration (18.19 and 27.95%) significantly. These results suggest that A. muricata can be an active source of substances with antinociceptive and anti-inflammatory activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号