首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
聚苯乙烯(PS)/聚酰胺(PA6)共混物中加入5份的马来酸酐接枝氢化苯乙烯-丁二烯嵌段共聚物(SEBS-g—MA),提高了PA6的结晶度,但使结晶时问延长。非等温结晶动力学研究表明,在结晶前期,SEBS-g—MA可能对PS/PA6中的PA6有异相成核的作用,结晶后期,PS/PA6和PS/PA6/SEBS-g—MA的结晶方式基本一致。加入SEBS-g—MA,原位生成SEBS-g-PA6,提高了共混物的复数黏度(η^*)和储能模量(G’),在G’相同的情况下,PS/PA6/SEBS-g-MA的损耗模量(G″)低于PS/PA6。PS/PA6/SEBS-g—MA(50/50/5)共混物的冲击强度较PS/PA6(50/50)略有降低,拉伸强度略有提高。当SEBS-g-MA的用量大于5份后,拉伸强度降低,断裂伸长率增加,共混物的冲击强度随SEBS-g—MA含量的增加不断提高,PS/PA6/SEBS-g—MA(50/50/20)的冲击强度提高了2.4倍。  相似文献   

2.
聚烯烃接枝MAH对PET/PA6性能的影响   总被引:11,自引:1,他引:11  
用熔融挤出制备了聚烯烃马来酸酐(MAH)接枝物(GPE或GPP),同时,熔融挤出制备了PET/PA6,PET/KPA6/GPE(或PET/GPP)共混物,扫描电镜观察了共混物的结构形态,表明GPE(或GPP)加入改善了PET。PA6的相容性。共混物的力学性能测试表明,PET/PA6中加入5%-15%的聚烯烃接枝物,冲击强度比原来可提高1.3-3倍,拉伸强度提高2倍多,可得到综合性能较好的共混材料。  相似文献   

3.
以苯乙烯-马来酸酐共聚物(SMA)为反应增容剂,研究不同共混工艺和ABS/PA6配比对三共混体系聚集态结构和力学性能的影响。结果表明:SMA对共混体系增容效果显著,并明显改善了ABS/PA6共混体系的力学性能。其中当PA6用量为30份和40份时,SMA先与ABS共混再与PA6共混的方式所生成共混物的性能优于SMA先与PA6共混再与ABS共混的方式。PA6用量为30份时性能最好,共混物的分散相尺寸达到最小值0.31μm,分散相颗粒PA6周长面积比为最大值0.46,拉伸强度和冲击强度也分别为最大值63.2MPa和8.29kJ/m^2。当PA6用量达到45份时,共混方式对共混物的力学性能影响不大。研究表明,当ABS为连续相时,共混方式可以强烈地影响ABS/PA6共混物体系的聚集态结构和力学性能,而PA6和ABS向共连续相发展时,共混方式对ABS/PA6聚集态结构和力学性能则影响不大。  相似文献   

4.
EPDM接枝马来酸酐增韧酰胺6的性能及冲击断面形态   总被引:3,自引:0,他引:3  
研究了EPDM接枝马来酸酐(EPDM-g-MAH)用量对聚酰胺6(PA6)性能的影响及PA6/EPDM-g-MAH共混物的冲击断面形态。结果表明:EPDM-g-MAH分散相颗粒民PA6基体能形成牢固的结合,对PA6有显著的增韧性作用;当PA6/EPDM-g/MAH的用量比为90/10时,共混物的综合性能最理想,其常温(25℃)及低温(-20℃)下的冲击强度分别比纯PA6增大64.8%和106.6%。而且具有良好的挤出和注射成型加工性能。  相似文献   

5.
制备性能优良的尼龙6/聚丙烯(PA6/PP)共混物,需要解决的关键问题是PP在PA6树脂中的分解及界面相容性,年近来,PA6/PP相容性研究主要是引入第三组分作共混物的增容剂,综述了PA6/PP共混物的最新研究及发展趋势。  相似文献   

6.
环氧化天然橡胶/PVC共混物的热氧降解   总被引:3,自引:0,他引:3       下载免费PDF全文
张北龙  刘惠伦 《橡胶工业》2001,48(6):330-333
采用热重-差示热重分析和差热分析了环氧化天然橡胶(ENR)/PVC共混物的热氧降解过程,结果表明,炭黑补强的ENR/PVC共混物的热氧降解过程分为3个阶段,第1阶段主要是PVC脱氯化氢,而氯化氢引起ENR发生催化氧化反应而放热,且该阶段明显受到ENR/PVC共混比的影响,随着PVC用量的增大,共混物的热氧稳定性下降。  相似文献   

7.
PP/PA6共混物的形态和流变性能   总被引:4,自引:0,他引:4  
将聚丙烯(PP)和聚酰胺6(PA6)共混可以使PP和PA6在性能上互补,所得共混物性价比很高。本文分析了PP/PA6共混物在共混时相容性和流变,性对其形态的影响。列举了目前PP/PA6增容剂的研究情况,二相相容时的简单动力学模型,以及分散相PA的含量、增容剂的种类、双螺杆挤出机熔融段的螺杆结构、螺杆转速、共混方式等影响PP/PA6共混物形态的因素。  相似文献   

8.
超韧PA6/ABS合金的制备   总被引:5,自引:0,他引:5  
李超  李光吉  王志 《塑料工业》2005,33(9):22-24
以苯乙烯-马来酸酐(SMA)共聚物为增容剂,考察了ABS及SMA的含量对PA6/ABS共混体系的力学性能的影响;并利用SEM研究了PA6/ABS冲击断面的相结构。研究表明:SMA是PA6/ABS共混体系的有效增容剂。随着其含量的增加,分散相ABS粒子的尺寸减小,分散更加均匀,能显著地改善PA6/ABS共混物的冲击、拉伸和弯曲性能。在该共混体系中,ABS含量的增加能够大幅度地提高PA6/ABS共混物的冲击韧性;但当ABS含量超过10%时,将使PA6/ABS共混物的拉伸和弯曲性能明显下降。SMA的添加量为0.5%,且质量比为90/10的PA6/ABS共混体系能保持较好的加工性能,制备的PA6/ABS合金具有最佳的综合力学性能和超高韧性.Izod缺口冲击强度高达1200J/m。  相似文献   

9.
采用乳液聚合法制备了一系列马来酸酐(MAH)官能化的丙烯酸丁酯橡胶(PBA)与苯乙烯(St)及丙烯腈(AN)的接枝共聚物(PBA-g-SAN)核壳结构改性剂(ASA-g-MAH),用于聚酰胺6(PA6)的增韧。Molau实验证实了PA6/ASA-g-MAH共混体系中存在化学反应,考察了MAH含量对共混体系结构和性能的影响。结果表明,随着MAH含量的增加,PA6/ ASA-g-MAH共混物的冲击强度逐渐增大,当MAH含量为4 %(质量分数,下同)时材料冲击强度达到1008 J/m;与PA6/ASA共混物相比,PA6/ASA-g-MAH共混物具有较高的拉伸强度和断裂伸长率;随着MAH含量的增加,ASA- g-MAH在PA6基体中的分散程度越来越好,当MAH含量达到4 %以上时,无聚集现象发生;ASA-g-MAH中橡胶粒子的空洞化和PA6基体的剪切屈服是主要的增韧机理。  相似文献   

10.
将聚酰胺6(PA6)与市售的丙烯腈-丁二烯-苯乙烯(ABS)树脂共混,制备PA6/ABS共混物。研究了ABS树脂的用量对PA6/ABS共混物力学性能的影响;采用苯乙烯及丙烯腈共聚物(SAN)和ABS粉料熔融共混制得不同胶含量的ABS/SAN共混物。研究了不同胶含量的ABS/SAN共混物对PA6/ABS共混物力学性能的影响。在PA6/ABS/SAN共混物中引入苯乙烯-丙烯腈-马来酸酐共聚(SAM)树脂取代部分SAN树脂,研究了SAM树脂的加入及引入顺序的不同对共混物性能的影响。结果表明, ABS树脂的用量在50%~60%左右时共混物性能最佳。随ABS/SAN共混物胶含量提高,共混物的拉伸强度、弹性模量、弯曲强度和弯曲模量逐渐降低。随SAM树脂替代SAN量增加,共混物的拉伸和弯曲性能先降低后增加。但共混物熔体流动速率降低明显,而SAM树脂的引入顺序对共混物的力学性能影响不大。  相似文献   

11.
The effects of PE-g-MA as a compatibilizer in binary blends of 70/30 high-density polyethylene/epoxidized natural rubber (HDPE/ENR) have been investigated by means of mechanical analysis and scanning electron microscopy. The special emphasis was given to the role of PE-g-MA in inducing interactions between HDPE and ENR. It has been observed that increasing the amount of PE-g-MA in the blend increases the tensile strength, elongation at break, and impact strength. It is believed that the degree of cross-link increased, which led to improve the interaction between the HDPE and ENR. The optimum stress values are shown in the blend containing 6% PE-g-MA. Scanning electron micrographs (SEM) of the samples also indicated that the addition of compatibilizer decreases the domain size of the dispersed phase. Well-dispersed plastic particles in a rubber matrix were strongly indicated in these samples. The results obtained reveal that the addition of PE-g-MA in HDPE/ENR blend led to an increase in the homogeneity of the blends.  相似文献   

12.
The adhesion properties, i.e. viscosity, tack, and peel strength of pressure-sensitive adhesives prepared from natural rubber/epoxidized natural rubber blends were investigated using coumarone-indene resin and toluene as the tackifier and solvent respectively. One grade of natural rubber (SMR 10) and two grades of epoxidized natural rubbers (ENR 25 and ENR 50) were used to prepare the rubber blends with blend ratio ranging from 0 to 100%. Coumarone-indene resin content was fixed at 40 parts per hundred parts of rubber (phr) in the adhesive formulation. The viscosity of adhesive was measured by a HAAKE Rotary Viscometer whereas loop tack and peel strength was determined using a Lloyd Adhesion Tester operating at 30 cm/min. Results show that the viscosity of the adhesive passes through a minimum value at 20% blend ratio. For loop tack and peel strength, it indicates a maximum at 60% blend ratio for SMR 10/ENR 25 and SMR 10/ENR 50 systems. However, for ENR 25/ENR 50 blend, maximum value is observed at 80% blend ratio. SMR 10/ENR 25 blend consistently exhibits the best adhesion property in this study, an observation which is attributed to the optimum compatibility between rubbers and wettability of adhesive on the substrate. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
《国际聚合物材料杂志》2012,61(3-4):663-672
Abstract

Tensile strength, tear strength and swell index of epoxidized natural rubber (ENR 50) blended with styrene-butadiene rubber (SBR) was studied. The blend ratio was varied from 0–100% of ENR 50. Accelerated-sulfur conventional vulcanization system was used throughout the study. Tensile property and tear strength of the blend were determined by Monsanto Tensometer (Model T10) and toluene was used as the solvent in the swell index experiment. Results show that tensile strength and elongation at break increases with ENR 50 up to about 70% ENR 50, whereas for the tear strength, it increases steadily with increasing ENR 50, an observation which is attributed to strain-induced crystallization of ENR. Similar behavior was observed with the aged sample though its absolute value is lower than that of the unaged sample. As for the swell index, it decreases gradually with increasing ENR indicating the increase in polarity of the blend as the blend ratio of ENR 50 is increased.  相似文献   

14.
Poly (vinyl chloride), PVC/epoxidized natural rubber blend, ENR/carbon nanotubes, CNTs nanocomposites were prepared using melt intercalation and solution blending methods. In both preparation methods PVC: ENR: CNTs ratios were fixed at 50:50:2, while the 50/50 PVC/ENR blend without the addition of CNTs was used as control. The PVC/ENR/CNTs nanocomposites were exposed to electron beam (EB) irradiation at doses ranging from 0–200 kGy. The effects of two different preparation methods on the tensile properties, gel fraction and morphology of the PVC/ENR/CNTs nanocomposites were studied. Prior to EB irradiation, the addition of 2 phr of CNTs caused a drop in the tensile strength (Ts) of the 50/50 PVC/ENR blend, implying poor distribution of CNTs in the PVC/ENR blend matrix. However upon EB irradiation, the nanocomposites prepared by the melt blending method exhibited higher values of Ts as compared to the neat PVC/ENR blend due to occurrence of radiation-induced cross-linking in the PVC/ENR blend matrix. Transmission electron microscopy (TEM) images proved that a better dispersion of CNTs in PVC/ENR blend matrix can be achieved by melt intercalation compared to solution blending and the dispersion of CNTs was improved by irradiation. Scanning electron microscopy (SEM) results showed a distinct failure surface with formation of rough structure for the irradiated nanocomposites, which explains the higher values of tensile properties compared to the non-irradiated nanocomposites.  相似文献   

15.
Novel degradable materials based on ternary blends of natural rubber (NR)/linear low-density polyethylene (LLDPE)/thermoplastic starch (TPS) were prepared via simple blending technique using three different types of natural rubber (i.e., unmodified natural rubber (RSS#3) and ENR with 25 and 50 mol% epoxide). The evolution of co-continuous phase morphology was first clarified for 50/50: NR/LLDPE blend. Then, 10 wt% of TPS was added to form 50/40/10: NR/LLDPE/TPS ternary blend, where TPS was the particulate dispersed phase in the NR/LLDPE matrix. The smallest TPS particles were observed in the ENR-50/LLDPE blend. This might be attributed to the chemical interactions of polar functional groups in ENR and TPS that enhanced their interfacial adhesion. We found that ternary blend of ENR-50/LLDPE/TPS exhibited higher 100 % modulus, tensile strength, hardness, storage modulus, complex viscosity and thermal properties compared with those of ENR-25/LLDPE/TPS and RSS#3/LLDPE/TPS ternary blends. Furthermore, lower melting temperature (T m) and heat of crystallization of LLDPE (?H) were observed in ternary blend of ENR-50/LLDPE/TPS compared to the other ternary blends. Also, neat TPS exhibited the fastest biodegradation by weight loss during burial in soil for 2 or 6 months, while the ternary blends of NR/LLDPE/TPS exhibited higher weight loss compared to the neat NR and LLDPE. The lower weight loss of the ternary blends with ENR was likely due to the stronger chemical interfacial interactions. This proved that the blend with ENR had lower biodegradability than the blend with unmodified NR.  相似文献   

16.
Epoxidized natural rubber/Ethylene vinyl acetate copolymer (ENR‐50/EVA) blends with different ratios were prepared by using a Haake internal mixer. The effect of the blend ratio on the processing, tensile properties (such as tensile strength, elongation at break, Young's modulus and stress–strain behavior), morphology, dynamic mechanical properties, and thermal properties has been investigated. The tensile properties increase with the increase of EVA content, whereas the stabilization torque increases with the increase of ENR‐50 content in the blend. In 40:60 and 50:50 blend of ENR‐50/EVA, both the phases exist as continuous phases, producing a co‐continuous morphology. At these blend ratio, the drastic change in properties were noted, indicating that the phase inversion occurs. The results on dynamic mechanical properties revealed that the blends are compatible. Blending of ENR‐50 and EVA lead to the improvement in thermal stability and 50:50 blend ratios is the most stable blend. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1504–1515, 2006  相似文献   

17.
The effect of rubber blend ratio and testing rate on the adhesion properties of epoxidized natural rubber (ENR 25)/styrene–butadiene rubber (SBR) blend adhesive were studied using 40 parts per hundred parts of rubber (phr) of coumarone-indene resin as the tackifying resin. Toluene and poly(ethylene terephthalate) (PET) film were used as the solvent and substrate, respectively. A SHEEN hand coater was used to coat the adhesive on the PET substrate at 30, 60, 90, and 120 µm coating thickness. Viscosity was determined by a Brookfield viscometer whereas loop tack, peel strength, and shear strength were measured by a Llyod Adhesion Tester at various testing rates from 10 to 60 cm/min. Results show that viscosity increases gradually with % ENR 25. However, loop tack, peel strength, and shear strength of adhesives indicate a maximum value at 40% ENR 25, after which the adhesion properties decreases with further increase in % ENR 25. This observation is attributed to the varying degree of wettability which culminates at an optimum value of 40% ENR 25 blend ratio. In all cases, the adhesion properties increase with increasing coating thickness and rate of testing.  相似文献   

18.
Thermoplastic natural rubber based on polyamide‐12 (PA‐12) blend was prepared by melt blending technique. Influence of blending techniques (i.e., simple blend and dynamic vulcanization) and types of natural rubber (i.e., unmodified natural rubber (NR) and epoxidized natural rubber (ENR)) on properties of the blends were investigated. It was found that the simple blends with the proportion of rubber ~ 60 wt % exhibited cocontinuous phase structure while the dynamically cured blends showed dispersed morphology. Furthermore, the blend of ENR exhibited superior mechanical properties, stress relaxation behavior, and fine grain morphology than those of the blend of the unmodified NR. This is attributed to chemical interaction between oxirane groups in ENR molecules and polar functional groups in PA‐12 molecules which caused higher interfacial adhesion. It was also found that the dynamic vulcanization caused enhancement of strength and hardness properties. Temperature scanning stress relaxation measurement revealed improvement of stress relaxation properties and thermal resistance of the dynamically cured ENR/PA‐12 blend. This is attributed to synergistic effects of dynamic vulcanization of ENR and chemical reaction of the ENR and PA‐12 molecules. Furthermore, the dynamically cured ENR/PA‐12 blend exhibited smaller rubber particles dispersed in the PA‐12 matrix. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
A polyacrylic acid (PAA)-epoxidised natural rubber (ENR) blend becomes crosslinked during high temperature moulding and such a blend was found to be a good adhesive for aluminium (Al)-aluminium (Al) bonding. The joint strength can be improved by the incorporation of silica filler into the adhesive up to a loading of 5 phr. However, higher filler loading causes deterioration of the joint strength. Electron Spectroscopy for Chemical Analysis (ESCA) studies of the peeled and then leached Al surface shows that the ENR phase of the blend is primarily responsible for the adhesion with the Al surface. With the increase in filler loading adhesion with Al increases at the cost of crosslinking between the component polymers. This is substantiated by dynamic mechanical analyses of the blends and joints (that is, Al/blend/Al composites). The changes in dynamic mechanical properties of the blends due to Al adhesion could be correlated with the peel strength of the Al/blend/Al joints.  相似文献   

20.
The adhesion properties of epoxidized natural rubber (ENR 25)/(ethylene‐propylene‐diene rubber) blend adhesive were investigated by using various blend ratios of the two rubbers and rate of testing. Coumarone‐indene resin was used as the tackifier. Results show that the loop tack and peel strength of adhesives increase steadily up to 60% ENR 25 before decreasing with further increase in % ENR 25. This observation is attributed to an increase in wettability and compatibility up to the optimum value of the ENR 25 blend ratio. However, shear strength increases continuously with increasing percentage of ENR 25, an observation that is ascribed to the increasing cohesive strength of the blend adhesive. In all cases, the adhesion properties increase with increasing coating thickness and testing rates. J. VINYL ADDIT. TECHNOL., 22:134–139, 2016. © 2014 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号