首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 672 毫秒
1.
In order to ameliorate the electrochemical cycle stability of the RE-Mg-Ni based A2B7-type electrode alloys, the Mg content in the alloy was reduced and La in the alloy was partially substituted by Sm. The La0.8-xSmxMg0.2Ni3.15Co0.2Al0.1Si0.05 (x=0, 0.1, 0.2, 0.3, 0.4) elec-trode alloys were fabricated by casting and annealing. The microstructures of the as-cast and annealed alloys were characterized by XRD and SEM. The electrochemical hydrogen storage characteristics of the as-cast and annealed alloys were measured. The results revealed that all of the experimental alloys mainly consisted of two phases: (La,Mg)2Ni7 phase with the hexagonal Ce2Ni7-type structure and LaNi5 phase with the hexagonal CaCu5-type structure. As Sm content grew from 0 to 0.4, the discharge capacity and the high rate discharge ability (HRD) first in-creased and then decreased for the as-cast and annealed alloys, whereas the capacity retaining rate (S100) after 100 cycles increased continuously.  相似文献   

2.
La0.75Mg0.25Ni3.5–xCo0.2Alx (x=0–0.09) hydrogen storage alloys were prepared by induction melting and effect of Al substitution for Ni on phase constitution and electrochemical property was investigated.With the substitution of Al for Ni,LaNi5 and LaNi2 phases occurred and (La,Mg)2(Ni,Co,Al)7 phase with hexagonal Ce2Ni7-type structure replaced (La,Mg)2(Ni,Co)7 phase.The cell volumes of LaNi5 and (La,Mg)2(Ni,Co,Al)7 main phases increased with increasing Al content.Some electrochemical properties and kinetic parameters of the alloys,including discharge capacity,high rate discharge ability (HRD),loss angle (ψ),exchange current density (I0) and limiting current density (IL),decreased with increasing amount of substitution of Al for Ni.Substitution of Al for Ni could be favorable for positive shift in corrosion potential of the alloy electrode,and prolonged cyclic lifetime of La0.75Mg0.25Ni3.5–xCo0.2Alx (x=0–0.09) alloy electrodes.  相似文献   

3.
Aiming at the improvement of the cyclic stability of La-Mg-Ni system (PuNi3-type) hydrogen storage alloy, Ni in the alloy was partly substituted by Fe. The electrode alloys of La0.7Mg0.3Co0.45Ni255-xFex (x=0, 0.1, 0.2, 0.3, 0.4) were prepared by casting and rapid quenching. The influence of the quenching on cyclic stability as well as structure of the alloys was investigated in detail. The results of electrochemical measurement indicated that rapid quenching significantly improved cyclic stability. When the quenching rate rose from 0 (As-cast was defined as a quenching rate of 0 m/s) to 30 m/s, the cyclic life of Fe-free alloy (x=-0) increased from 81 to 105 cycles, and for alloy containing Fe(x=0.4), it grew from 106 to 166 cycles at a current density of 600 mA/g. The results obtained by XRD, TEM and SEM revealed that the as-cast and quenched alloys had multiphase structures, including two major phases (La, Mg)Ni3 and LaNi5 as well as an imptLrity phase LaNi2. Rapid quenching helped the formation of an amorphous-like structure in Fe containing alloys.  相似文献   

4.
Mm0.3Ml0.7Ni3.55Co0.75Mn0.4-Al0.3 alloy has high chemical activity and favorable plateaus pressure. Mg2Ni is in favor of high hydrogen storage capacity and low weight, but it is difficult to be activated. In order to improve the capacity and cycle performances of hydrogen-storage alloy electrodes, Mm0.3Ml0.7Ni3.55Co0.75Mn0.4-Al0.3-x%Mg2Ni (x=0,5,10,30) composite hydrogen storage alloys prepared by two-step re-melting were investigated in this work. The influences of Mg2Ni content on the cycle stabilities were analyzed by electrochemical methods. It was observed by XRD that the main phase of all the alloys is LaNi5 and the crystal lattice parameters of LaNi5 are changed with the increasing of x value, i. e, α-axis and unit cell volume decrease and c-axis decreases nonlinearly. The c-axis of alloy with x=5 is larger than the others. With the increasing of x value, capacity retentions of the composite hydrogen storage alloys rise from 66.21% while x=0 to 82.04% while x=10, but the capacity retention of the composite alloy with 30% Mg2Ni declines because of its decreasing axial ratio. More over, the composite alloy with 5% Mg2Ni shows the best cycle stability and higher discharge capacity, and it is an appropriate candidate for battery materials.  相似文献   

5.
RE3-xMgx(Ni0.7Co0.2Mn0.1)9 (x=0.5-1.25) alloys were prepared by induction melting and the influence of the partial substitution of RE (where RE stands for La-rich mischmetal) by Mg on the hydrogen storage and electrochemical properties of the alloys were investigated systematically. These alloys mainly consisted of three phases, La(Ni,Mn,Co)5 phase, La2Ni7 phase and Mg2Ni phase. The P-C-T isotherms showed that with Mg content increasing in the alloys, the hydrogen storage capacity first increased and reached the maximum capacity of 1.36 wt.% when x=1.0, and then decreased with x increasing further. Electrochemical studies revealed that the discharge capacity reached the maximum value of 380 mAh/g and the alloy electrode presented better cyclic stability when RE/Mg=2. The high rate discharge ability of the alloy electrodes was also improved by the substitution of Mg for RE. The RE2Mg(Ni0.7Co0.2Mn0.1)9 alloy exhibited better hydrogen absorption kinetics (x=1.0).)  相似文献   

6.
Hydrogen storage alloys(LaGdMg)Ni3.35-xCoxAl0.15(x=0,0.1,0.3,0.5,1.0,1.5,2.0) were prepared by induction melting followed by annealing treatment in argon atmosphere.The effects of partly replacing Ni by Co element in(LaGdMg)Ni3.35Al0.15 on the phase structure and electrochemical properties of(LaGdMg)Ni3.35-xCoxAl0.15 alloys were investigated.Structure analysis showed that the alloys consisted of Ce2Ni7-type(Gd2Co7-type),CaCu5-type,Pr5Co19-type,PuNi3-type phase structure.The addition of Co element obviously reduced the contents of CaCu5-type phase and increased the contents of Ce2Ni7-type phase.However,Pr5Co19-type and CaCu5-type phase obviously increased with the high content of Co.Rietveld analysis showed that the c-axis lattice parameters and cell volumes of the component phases increased with increasing Co content.The electrochemical measurements showed that as the Co content increased,the maximum discharge capacity and the cyclic stability of the annealed alloys both first increased then decreased.The(LaGdMg)Ni3.05Co0.3Al0.15 alloy electrode exhibited the maximum discharge capacity(392.92 mAh/g),and the(LaGdMg)Ni1.85Co1.0Al0.15 alloy electrode showed the best cyclic stability(S100=96.1%).  相似文献   

7.
The La0.55Pr0.05Nd0.15Mg0.25Ni3.5(Co0.5Al0.5)x(x=0.0, 0.1, 0.3, 0.5) alloys were prepared by magnetic levitation melting under an Ar atmosphere, and the effects of Co and Al on the hydrogen storage and electrochemical properties were systematically investigated by pressure composition isotherms, cyclic voltammetry, Tafel polarization and electrochemical impedance spectroscopy testing. The results showed that the alloy phases were mainly consisted of (La,Pr)(Ni,Co)5, LaMg2Ni9, (La,Nd)2Ni7 and LaNi3 phases, and the cell volumes of (La,Pr)(Ni,Co)5, LaMg2Ni9, (La,Nd)2Ni7 and LaNi3 phases expanded with Co and Al element added. The hydrogen storage capacity initially increased from 1.36 (x=0) to 1.47 wt.% (x=0.3) and then decreased to 1.22 wt.% (x=0.5). The discharge capacity retention and cycle stability of the alloy electrodes were improved with the increase of Co and Al contents. The La0.55Pr0.05Nd0.15Mg0.25Ni3.5(Co0.5Al0.5)0.3 alloy electrode possessed better electrochemical kinetic characteristic.  相似文献   

8.
To improve the cyclic stability of La-Mg-Ni system alloy, as-cast La0.75Mg0.25Ni3.5Co0.2 alloy was annealed at 1123, 1223, and 1323 K for 10 h in 0.3 MPa argon. The microstructure and electrochemical performance of different annealed alloys were investigated systematically by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), X-Ray Photoelectron Spectroscopy (XPS), and electrochemical experiments. The results obtained by XRD and SEM showed that the as-cast and annealed (1123 K) alloys had multiphase structure containing LaNis, (La, Mg)2(Ni, Co)7 and few LaNi2 phases. When annealing temperatures approached 1223 and 1323 K, LaNi2 phase disappeared. The annealed alloys at 1223 and 1323 K were composed of LaNi5, (La, Mg)2(Ni, Co)7 and (La, Mg)(Ni, Co)3 phases. With increasing annealing temperature, the maximum discharge capacity of the alloy decreased monotonously, but the cyclic stability was improved owing to structure homogeneity and grain growth after annealing, as well as the enhancement of anti-oxidation/corrosion ability and the suppression of pulverization during cycling in KOH electrolyte.  相似文献   

9.
Yttrium(Y) has been used as the partial substitution element for lanthanum(La) to improve the electrochemical kinetic performances of La-Mg-Ni-based hydrogen storage alloys. La0.80–xYxMg0.20Ni2.85Mn0.10Co0.55Al0.10(x=0.00, 0.05 and 0.10) alloys were prepared by the inductive melting technique. The alloys were composed of La Ni5 and(La,Mg)2Ni7 phases, the introduction of Y promoted the formation of(La,Mg)2Ni7 phase, and thus the Y-substituted alloy electrodes exhibited higher discharge capacities. Y substitution was also found to be effective to improve the discharge kinetics of the alloy electrodes. When the Y content x increased from 0.00 to 0.10, the high-rate dischargeability of the alloy electrodes at a discharge current density of 1800 m A/g(HRD1800) increased from 23.6% to 39.7% at room temperature. In addition, the measured HRD1800 showed a linear dependence on both the exchange current density and the hydrogen diffusion coefficient at different temperatures, respectively.  相似文献   

10.
Phase structure and electrochemical characteristics of Co-free La0.7Ce0.3(Ni3.65Cu0.75Mn0.35Al0.15(Fe0.43B0.57)0.10)x (0.90≤x≤1.10) al-loys were investigated. When x was 0.90, the alloy was composed of LaNi5, La3Ni13B2 and Ce2Ni7 phases. The Ce2Ni7 phase disappeared, and the abundant of La3Ni13B2 phase decreased when x increased to 0.95. When x was 1.00 or higher the alloys consisted of LaNi5 phase. The lat-tice parameter a and the cell volume V of the LaNi5 phase decreased, and the c/a ratio of the LaNi5 phase increased with x value increasing. Maximum discharge capacity of the alloy electrodes first increased and then decreased with x value increasing from 0.90 to 1.10, and the highest value was obtained when x was 1.00. High-rate dischargeability at the discharge current density of 1200 mA/g increased from 50.7% (x= 0.90) to 64.1% (x=1.10). Both the charge-transfer reaction at the electrode/electrolyte interface and the hydrogen diffusion in the alloy were responsible for the high-rate dischargeability. Cycling capacity retention rate at 100th cycle (S100) gradually increased from 77.3% (x= 0.90) to 84.6% (x=1.10), which resulted from the increase in Ni content and the c/a ratio of the LaNi5 phase with x value increasing.  相似文献   

11.
In order to investigate the effect of substituting La with Pr on structural and hydrogen storage properties of La-Mg-Ni system (AB3.5-type) hydrogen storage alloys, a series of La0.65-xPrxNd0.12Mg0.23Ni3.4Al0.1(x=0, 0.10, 0.15, 0.2) hydrogen storage alloys were prepared. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS) analyses revealed that two alloys (x=0.0 and 0.10) were composed of (La, Mg)2(Ni,Al)7 phase, La(Ni,Al)5 phase and (La,Mg)Ni2 phase, while other alloys (x=0.15 and 0.20) consisted of (La,Mg)2(Ni,Al)7 phase, La(Ni,Al)5 phase, (La,Mg)Ni2 phase and (La, Mg)(Ni,Al)3 phase. All alloys showed, however, only one pressure plateau in P-C isotherms. The Pr/La ratio in alloy composition influenced hydrogen storage capacity and kinetics properties. Elec-trochemical studies showed that the discharge capacity decreased from 360 mAh/g (x=0.00) to 335 mAh/g (x=0.20) as x increased. But the high-rate dischargeability (HRD) of alloy electrodes increased from 26% (x=0.00) to 56% (x=0.20) at a discharge current density of Id=1800 mA/g. Anode polarization measurements were done to further understand the electrochemical kinetics properties after Pr substitution.  相似文献   

12.
In order to improve electrochemical properties,especially cycling stability,Co was partially substituted by Fe in A2B7-type La-Mg-Ni-based alloys.The La0.74Mg0.26Ni2.55Co0.65-xFex(x=0,0.10,0.20,0.30) alloys were prepared by inductive melting,and their phase structure and electrochemical properties were studied.The XRD and SEM results showed that the alloys consisted mainly of(La,Mg)2Ni7 phase,(La,Mg)5Ni19 phase and LaNi5 phase,except for absence of LaNi5 phase in the non-substituted alloy.The(La,Mg)5Ni19 ph...  相似文献   

13.
采用电磁感应悬浮炉制备La0.55Pr0.05Nd0.15Mg0.25Ni3.5-xCoxAl0.25(x=0,0.1,0.2,0.3,0.4)系列合金,研究Co含量对合金的相结构、吸放氢性能和电化学性能的影响。研究结果表明,该系列合金主要由LaNi5、Nd2Ni7相组成。当Co含量大于0.2时,合金中出现La2Ni7相。压强-吸氢量-温度(Pressure-Content-Temprature)测试显示在303 K温度下,合金具有良好的吸氢性能,当x=0.4时合金的最大吸氢量为1.29(质量分数,%)。电化学测试表明:随x值变化,合金电极的最大放电容量分别为340.0(x=0.0)、346.6(x=0.1)、370.0(x=0.2)、320.0(x=0.3)和346.6(mA.h)/g(x=0.4);随Co含量增加,合金电极容量保持率不断增加,高倍率放电性能先增加后减小,循环伏安曲线、氢在合金体中的扩散系数D共同反映了合金电极的动力学特性。  相似文献   

14.
As the alloy with the most suitable Ni/(La+ Mg) ratio has higher capacity and good cycle stability,theeffects of Ni/(La+Mg) ratios on the electrochemical performances of the La0.80 Mg0.20 Nix (x= 3.5 to 5.0) alloys have been investigated to find the most suitable Ni/(La+ Mg) ratio.The results of XRD and SEM observations show that the phase composition of the alloys varies with different Ni/(La+Mg) ratios.When Ni/(La+Mg) is notmore than 4.25,all the alloys contain LaNi5 and (La,Mg)2Ni7 phases,in addition,the LaMg and (La,Mg)Ni3 phases exist in the x=3.5 and 3.75 alloys,respectively.The LaMg2Ni9 phase exists in the x=4.25 alloy.There are the LaNi5 and LaMg2 Ni9 phases in the x= 4.5,4.75,and 5.0 alloys.The phase abundance and cell volume change with different Ni content.When the Ni/(La+Mg) ratio is not more than 4.25,the alloys possess excellent activation capability,however,the activation capabilities of the alloys decrease with a further increase in the Ni/(La+Mg)ratio.With increasing the Ni/(La+ Mg) ratio,the maximum discharge capacities,the medium voltages,and the cycle stabilities of the alloys first increase and then decrease.When the Ni/(La+Mg) ratio is 3.75,the corresponding alloyhas the maximum discharge capacity among all the alloys.However,the cycle stability of the Ni/(La+ Mg)= 4.0 alloy is better than that of the others.  相似文献   

15.
The phase structure and electrochemical characteristics of Ml ((Ni3.55Co0.75Mn0.40Al0.30)sx ( x = 0.88, 0.92, 0.96, 1.00) hydrogen storage alloys were studied. The effect of the stoichiometric ratio on the phase structure and electrochemical characteristics was analyzed. The results of XRD reveal that all the alloys consist mainly of LaNi5 phase with the hexagonal CaCu5 structure. But a few of the diffraction peaks of La2Ni7 phase on XRD pattern are observed when x ≤ 0.92, and with decreasing x, the intensity of La2Ni7 diffraction peaks increases and the values of lattice parameters a and cell volume increase, c and c/a of LaNi5 phase decrease gradually. When x≥0.96, La2Ni7 phase disappears and the alloys become single CaCu5-type. The electrochemical tests show that the maximum discharge capacity, high rate dischargeability and low temperature dischargeability are improved to different degrees by adjusting the stoichiometric ratio.  相似文献   

16.
采用感应熔炼方法制备了La0.75Mg0.25Ni3.5-xCox(x=0,0.25,0.75,1)四元贮氢合金,系统地研究了合金B侧Co对Ni部分替代对合金相结构及电化学性能的影响.X衍射(XRD)分析表明,La0.75Mg0.25Ni3.5-xCox由(La,Mg)2Ni-7相(包括Gd2 Co7型高温相和Ce2 Ni7型低温相)组成.此外,随着Co元素的加入,该类合金中出现CaCu5型LaNi5相.电化学测试表明,随Co含量的增加,合金电极活化次数增大,合金电极的最大放电容量增大,合金的最大放电容量由x =0.25时的376.53 mAh/g增加到x=1时的401.62mAh/g,氢扩散系数增大,循环稳定性变差,合金的高倍率放电性能降低,Co含量对合金电极高倍率放电性能HRD值的影响与对合金电极交换电流密度的影响趋势一致,这表明电极合金表面的电化学反应对合金的动力学性能影响更大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号