首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human factor VIII was isolated from commercial factor VIII concentrates and found to consist of multiple polypeptides with molecular weights ranging from 80 000 to 210 000. Immunological and amino acid sequence data identified these polypeptides as subunits of factor VIII. N-Terminal amino acid sequence analysis determined that the Mr 210 000 and 80 000 proteins are derived from the N- and C-terminal portions of factor VIII, respectively; Mr 90 000-180 000 polypeptides are derived from the Mr 210 000 polypeptide by C-terminal cleavages. Treatment of purified factor VIII with thrombin resulted in proteolysis of Mr 80 000-210 000 proteins and the generation of polypeptides of Mr 73 000, 50 000, and 43 000. Maximum coagulant activity of thrombin-activated factor VIII was correlated with the generation of these polypeptides. The proteolysis as well as activation of factor VIII by thrombin was found to be markedly dependent on CaCl2 concentration. Proteolysis of factor VIII with activated protein C (APC) resulted in degradation of the Mr 90 000-210 000 proteins with the generation of an Mr 45 000 fragment. This cleavage correlated with inactivation of factor VIII by APC. The Mr 80 000 protein was not degraded by APC. Factor Xa cleaved the Mr 80 000-210 000 factor VIII proteins, resulting in the generation of fragments of Mr 73 000, 67 000, 50 000, 45 000, and 43 000. Factor Xa was found to initially activate and subsequently inactivate factor VIII.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The heterodimeric structure of factor VIII was demonstrated by two approaches. First, the native molecular weights of several partially purified fractions of factor VIII were determined by measurement of Stokes radii and sedimentation coefficients to be approx. 237 500, 201 000 and 141 000. These measured molecular weights correlated with those derived from polypeptide chain composition, in which each molecule would consist of a doublet polypeptide of Mr 83 000/81 000 plus one predominant high-Mr polypeptide of either 146 000, 120 000 or 93 000. In addition, immunoadsorption using a monoclonal antibody specific for the light-chain doublet removed all of the heavy chains. Separation of the heavy chains from the light chain by EDTA further illustrated the non-covalent nature of the heterodimers. All forms had coagulant activity which was potentiated 13-15-fold by an equimolar amount of human alpha-thrombin. Thrombin converted the Mr 83 000/81 000 doublet to one of Mr 73 000/71 000, and cleaved the largest polypeptides to a transient intermediate form of Mr 93 000 which was further cleaved to polypeptides of Mr 51 000 and 43 000. Potentiation of coagulant activity was correlated with proteolytic cleavage of either or both the doublet and the Mr 93 000 polypeptides. These data indicate that human factor VIII purified from plasma consists of a group of heterodimers, composed of a light chain of Mr 83 000 (81 000) and a heavy chain which varies in size between Mr 170 000 and 93 000, each form of which is similarly potentiated and cleaved by thrombin.  相似文献   

3.
Abstract

Crosslinking experiments with various bifunctional reagents were used to investigate the nature and fate of the platelet growth factor (PDGF) receptor on Swiss mouse 3T3 cells. With ethylene glycol bis succinimidyl succinate (EGS) two bands with Mr 205′000 and Mr 190′000 were labeled at equal intensity, while with disuccinimidyl suberate (DSS) and the photoactivatable pazidophenylglyoxal (pAPG) almost exclusively the latter band was labeled, when analyzed by SDS polyacrylamide gel electrophoresis under reducing conditions. Evidence is presented that the Mr 190′000 band represents a Mr 175′000 receptor protein crosslinked to a single chain of the PDGF-dimer and the Mr 205′000 species the same Mr 175′000 protein crosslinked to both chains of PDGF. Pretreatment of cells with tunicamycin generated a third labeled band with Mr 150′000, while pretreatment with neuraminidase resulted in a shift of the Mr 205′000 and 190′000 bands by 5′000. This shows that the PDGF receptor is a sialoglycoprotein, consisting of a Mr β 135′000 proteinaceous core and a Mr β 40′000 carbohydrate moiety containing sialic acid. The virtually unchanged labeling intensity seen with tunicamycin and neuraminidase pretreated cells further suggests that the carbohydrate portion of the receptor is not required for PDGF binding. Finally, the crosslinking technique was used to show that at 37°C preformed 125I-PDGF receptor complexes disappear from the cell surface with a t1/2 β 8 min.  相似文献   

4.
Bacterial endotoxin (lipopolysaccharide, LPS) induces coagulation of horseshoe crab hemolymph. Our previous studies had demonstrated that a hemolymph factor, designated factor B, was associated with the LPS-mediated activation of the Limulus clotting system [Ohki et al. (1980) FEBS Lett. 120, 318-321]. On further purification of factor B we found that an additional component, designated factor C, was required to generate factor B activity in the presence of LPS in order to activate the proclotting enzyme. To elucidate the role of factor C in the LPS-mediated reaction, factor C was isolated and characterized from the hemocyte lysate under sterile conditions. The preparation exhibited a single band on sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) in the absence of 2-mercaptoethanol, while two protein bands on SDS-PAGE were observed after reduction. Thus, factor C had a Mr of 123 000 consisting of a heavy chain of Mr = 80 000 and a light chain of Mr = 43 000. Factor C was converted to an activated form in the presence of LPS with a Mr = 123 000, designated factor C. Upon activation, cleavage of the light chain occurred resulting in the accumulation of two new fragments of Mr = 34000 and 8500 on reduced SDS-PAGE. A diisopropylfluorophosphate-sensitive active site was localized in the light chain (Mr = 34000) of factor C. The reconstitution experiments, using factor C, factor B, proclotting enzyme and LPS, demonstrated that all of these proteins are essential for the endotoxin-mediated coagulation system. On the basis of these results we propose that a cascade pathway of LPS-induced activation of the Limulus clotting system consists of three sequential activations of hemolymph serine protease zymogens.  相似文献   

5.
Human factor VIII was purified from commercial factor VIII concentrate with a 12% yield. The specific coagulant activity of purified factor VIII was 8,000 units/mg. In the presence of SDS the purified factor VIII consisted of a variety of polypeptides on polyacrylamide gels, ranging between Mr 80,000 and Mr 208,000. In the absence of SDS the purified factor VIII showed an apparent molecular weight of 270,000 upon Sephadex G200 gel-filtration. The purified factor VIII could be activated by thrombin, which resulted in the disappearance of Mr 108,000-208,000 polypeptides in favor of an Mr 92,000 polypeptide. Treatment with factor Xa also activated factor VIII, whereas treatment with activated protein C resulted in the inactivation of coagulant activity. Coagulant-active 125I-factor VIII was prepared using a lactoperoxidase radioiodination procedure. This 125I-factor had the same characteristics as unlabeled factor VIII. All polypeptides could be precipitated with monoclonal antibodies directed against factor VIII. With 125I-factor VIII a pIapp of 5.7 was found in the presence of urea.  相似文献   

6.
Several strains of Staphylococcus aureus secrete a protein, staphylocoagulase, that binds stoichiometrically to human prothrombin, resulting in a coagulant complex designated staphylothrombin. In the present study, staphylocoagulase was digested with alpha-chymotrypsin and the resulting fragments were isolated by gel filtration. One fragment (Mr 43,000) exhibited a high affinity for human prothrombin (Kd = 1.7 X 10(-9) M), which is comparable to the affinity observed using intact staphylocoagulase (Kd = 4.6 X 10(-10) M). A complex of the Mr 43,000 fragment and prothrombin possessed both clotting and amidase activity essentially identical to that observed in a complex of intact staphylocoagulase and prothrombin. A second fragment (Mr 30,000) exhibited weaker affinity for prothrombin (Kd = 1.2 X 10(-7) M). While clotting activity was not observed with a complex of this fragment and prothrombin, it nonetheless possessed a weak amidase activity. A third fragment (Mr 20,000) was found to bind to prothrombin, but the resultant complex did not exhibit clotting or amidase activity. Amino-terminal sequence analyses of these staphylocoagulase fragments revealed that the Mr 43,000 fragment constitutes the amino-terminal portion of staphylocoagulase and also contains the Mr 30,000 and 20,000 fragments. Moreover, the amino-terminal sequence of the Mr 20,000 fragment was identical to that observed for the Mr 30,000 fragment. From these results, we conclude that the functional region of staphylocoagulase for binding and activation of human prothrombin is localized in the amino-terminal region of the intact bacterial protein.  相似文献   

7.
Identification of the AraE transport protein of Escherichia coli.   总被引:4,自引:1,他引:3       下载免费PDF全文
1. Two arabinose-inducible proteins are detected in membrane preparations from strains of Escherichia coli containing arabinose-H+ (or fucose-H+) transport activity; one protein has an apparent subunit relative molecular mass (Mr) of 36 000-37 000 and the other has Mr 27 000. 2. An araE deletion mutant was isolated and characterized; it has lost arabinose-H+ symport activity and the arabinose-inducible protein of Mr 36 000, but not the protein of Mr 27 000. 3. An araE+ specialized transducing phage was characterized and used to re-introduce the araE+ gene into the deletion strain, a procedure that restores both arabinose-H+ symport activity and the protein of Mr 36,000. 4. N-Ethylmaleimide inhibits arabinose transport and partially inhibits arabinose-H+ symport activity. 5. N-Ethylmaleimide modifies an arabinose-inducible protein of Mr 36 000-38 000, and arabinose protects the protein against the reagent. 6. These observations identify an arabinose-transport protein of Escherichia coli as the product of the araE+ gene. 7. The protein was recognized as a single spot staining with Coomassie Blue after two-dimensional gel electrophoresis.  相似文献   

8.
The coagulant protein from the venom of Russell's viper was purified by means of successive chromatography on Sephadex G-50, DEAE-cellulose and Sephadex G-200. The purified coagulant protein was homogeneous by polyacrylamide gel electrophoresis and ultracentrifugation. The molecular weight was estimated to be about 100 000 by ultracentrifuge analysis and 130 000 by gel filtration. The coagulant protein contains 11.1% carbohydrate which includes 5.1% hexose (galactose: mannose = 1:1), 5% hexosamine (glucosamine), and 1% neuraminic acid (N-acetylneuraminic acid and N-glycolyneuraminic acid). The isoelectric point is pH 6.3. The results of both sodium dodecyl sulfate electrophoresis and gel filtration in 6 M guanidium chloride suggest that it consists of four polypeptide chains. The coagulant protein functions as an enzyme in activating blood coagulation factor X in the presence of Ca2+. N-a-p-Toluenesulfonyl-L-arginine methyl ester hydrolyzing activity in the preparation definitely decreased during purification and it suggests that the clotting activity is not associated with the esterase activity. The clotting activity is inhibited by diisopropyl phosphorofluoridate and by phenylmethylsulfonyl fluoride, suggesting that the coagulant protein is a serine protease. The optimum pH is between pH 7.0 and pH 8.0. At neutral pH the coagulant protein is stable below 50 degrees C, but is rapidly inactivated above 55 degrees C.  相似文献   

9.
We have constructed recombinant plasmids that direct the synthesis of the Mr 19 000 protein encoded by the adenovirus type 12 (Ad12) E1b region as either a native protein or a protein fused to the amino-terminal portion of the elongation factor EF-TuB in Escherichia coli cells. Using these recombinants, we could synthesize a large amount of the fused protein, while only a small amount of the native Mr 19 000 protein was produced. The failure to synthesize the native Mr 19 000 protein in E. coli cells was ascribed to inefficient translation.  相似文献   

10.
The synthesis, processing, and secretion of factor VIII expressed from heterologous genes introduced into Chinese hamster ovary cells has been studied. The results show factor VIII to be synthesized as a primary translation product of approximately 230 kDa that can be detected in the lumen of the endoplasmic reticulum. In this compartment, the majority of the factor VIII is in a complex with a resident protein of the endoplasmic reticulum, binding protein, and may never appear in the medium. Some factor VIII transits the endoplasmic reticulum to the Golgi apparatus, where it is cleaved to generate the mature heavy and light chains. In the absence of von Willebrand factor in the medium, the secreted heavy and light chains are unassociated and subsequently degraded. In the presence of von Willebrand factor in the medium, the heavy and light chains are secreted as a stable complex and activity accumulates linearly with time. The utilization and complexity of asparagine-linked carbohydrate present on the secreted recombinant-derived factor VIII and human plasma-derived factor VIII were compared and found to be very similar. In both cases, the asparagine-linked carbohydrate moieties on the heavy chain are primarily of the hybrid or complex-type. In contrast, the factor VIII from both sources contains a high-mannose type of asparagine-linked carbohydrate on the light chain.  相似文献   

11.
R Sugasawara  E Harper 《Biochemistry》1984,23(22):5175-5181
Three collagenases from Clostridium histolyticum, designated C1, C2, and C3, with apparent molecular weights of 96 000, 92 000, and 76 000 were purified. Peptide maps of the enzymes prepared by digestion with Staphylococcus aureus V-8 protease were found to be similar. Cleavage of native C1 with alpha-chymotrypsin or V-8 protease yielded C2 and C3. This suggested that proteolysis of the Mr 96 000 collagenase may have occurred in vivo, producing the other two lower molecular weight enzymes. Previously prepared antiserum directed against a form of the bacterial enzyme similar by molecular weight and charge to collagenase C3 and Fab' fragments generated from this antiserum inhibited the collagenolytic activity. C1, C2, and C3 were immunologically identical by Ouchterlony double diffusion, and C3 was able to compete with C1 for the antiserum binding site. The ability of each enzyme to bind to antiserum raised against the bacterial collagenase supported the hypothesis that these three proteins were closely related. Zinc analyses of C1 and C3 resulted in a value of 1.14 mol of zinc/mol of C1 and 0.82 mol of zinc/mol of C3. C1 did not contain carbohydrate as measured by gas-liquid chromatography or periodic acid-Schiff staining.  相似文献   

12.
We have developed a retroviral-vector system for the transfer and expression of a cloned blood clotting factor VIII cDNA. Since inclusion of the complete cDNA into existing vectors is precluded by its large size, we deleted most codons for the B-domain, which is also excised during in vivo maturation of factor VIII. When inserted into the retroviral vector M5-neoR (Laker, C., Stocking, C., Bergholtz, V., Hess, N., DeLamarter, J. F., and Ostertag, W. (1987) Proc. Natl. Acad. Sci. U. S. A. 84, 8458-8462), the sequence was shown to be efficiently expressed in murine fibroblast cell lines, as well as in primary human skin fibroblasts. Upon infection of murine fibroblast cell lines, clones containing only a single copy of the integrated vector-provirus secreted up to 125 milliunits of factor VIII antigen/10(6) cells/day. Equivalent amounts were found in a factor VIII activity assay, which signifies that the factor VIII protein secreted by the infected fibroblasts is fully functional. Primary human skin fibroblasts infected with the vector virus secreted up to 30 milliunits/10(6) cells/day.  相似文献   

13.
A murine monoclonal antibody (IgG1k, Kd approximately 10(-8) M) specific for an epitope located on the heavy chain of human factor IXa was used to study structure-function relationships of factor IX. The antibody inhibited factor IX clotting activity but did not impair activation of factor IX either by factor XIa/calcium or by factor VIIa/tissue factor/calcium. The antibody also did not impair the binding of factor IXa to antithrombin III. Moreover, the antibody did not prevent calcium and phospholipid (PL) from inhibiting the binding of factor IXa to antithrombin III. The antibody also failed to impair activation of factor VII by factor IXa/calcium/PL. Furthermore, the antibody did not interfere with the very slow activation of factor X by factor IXa/calcium/PL. In contrast, the antibody did interfere with factor X activation when reaction mixtures also contained factor VIII:Ca/von Willebrand factor. The marked acceleration of factor X activation observed in control mixtures was not observed in mixtures containing the antibody. Similar results were obtained in reaction mixtures containing the Fab portion of the antibody and factor VIII:Ca free of von Willebrand factor. In additional experiments, factor VIII:Ca/von Willebrand factor was found to inhibit the binding of the antibody to 125I-factor IXa as determined using an immunosorbent assay. Moreover, the antibody displaced factor VIII:Ca from the factor X activator complex (IXa/calcium/PL/VIII:Ca) as evidenced by an altered elution pattern on gel filtration chromatography. From these observations, we conclude that the antibody impairs the clotting activity of factor IXa through interference with its binding of factor VIII:Ca. This suggests a significant role for the heavy chain (residues of 181-415) of factor IXa in binding factor VIII:Ca.  相似文献   

14.
The platelet protein thrombospondin (TSP) which is secreted from alpha-granules upon platelet activation agglutinates trypsinized, glutaraldehyde-fixed human erythrocytes. Optimal conditions for the hemagglutinating activity require that both Ca2+ and Mg2+ be present in final concentrations of 2 mM. In the presence of dithiothreitol (i.e., reduction of disulfide bonds), the lectin-like activity decreases in a manner proportional to the extent of reduction of the molecule from its native trimeric configuration into its Mr 180 000 subunits. Proteolysis of purified TSP with thermolysin, which produces discrete domains with the capacity to bind fibrinogen and heparin, also diminishes, but does not abolish, the hemagglutinating activity. Fibrinogen was without effect on hemagglutinating activity while heparin was found to be a potent inhibitor. Other proteoglycans such as hyaluronic acid, chondroitin sulfate, keratan sulfate, dermatan sulfate, and heparan sulfate had no effect. That portion of the TSP molecule apparently responsible for the hemagglutinating activity was identified by incubating a thermolytic digest of TSP with red blood cells and then determining which fragment was bound to the cell surface. The binding site resides within a peptide fragment of 140 000 daltons but is absent from an Mr 120 000 fragment derived from the Mr 140 000 fragment. Under the conditions for optimal expression of hemagglutinating activity (i.e., 2 mM MgCl2 and 2 mM CaCl2), this Mr 140 000 fragment was also shown to have heparin binding activity.  相似文献   

15.
Experiments were performed to investigate whether proteins other than fibrin are substrates for activated fibrin-stabilizing factor (FSF, blood coagulation Factor XIII, plasma transglutaminase) in clotting whole plasma. Three fluorescently labeled polypeptides were identified in serum prepared by clotting normal, but not FSF-deficient, plasma in the presence of the fluorescent amine, N-(5-aminopentyl)-5-dimethyl-aminonaphthalene-1-sulfonamide (dansylcadaverine). The major labeled polypeptide had a Mr (estimated by polyacrylamide gel electrophoresis in sodium dodecyl sulfate) of 1.6 times 10(5) and was found in the protein fraction precipitated by 33 to 50% saturated ammonium sulfate. The second had a Mr of 2.0 times 10(5), was found in the protein fraction insoluble in 33% saturated ammonium sulfate, and was precipitated by gamma-globulin directed against cold-insoluble globulin. The third had a Mr of 1.1 times 10(5) and was precipitated by 33 to 50% saturated ammonium sulfate. All three polypeptides were found in the first protein peak when labeled serum was chromatographed on Sephadex G-200. The immunoprecipitin arc containing alpha2-macroglobulin was fluorescent when labeled serum was analyzed by immunoelectrophoresis. These results indicate that alpha2-macroglubulin, cold-insoluble globulin, and an unidentified third protein with a subunit of Mr = 1.1 times 10(5) are transamidated by FSF in clotting plasma. The concentration of cold-insoluble globulin was decreased in serum formed at 37 degrees from normal, but not from FSF-deficient, plasma. The depletion of cold-insoluble globulin in normal serum was partially blocked by clotting in the presence of dansylcadaverine and completely blocked by clotting in the absence of calcium ions. Sera formed at 2 degrees from both normal and FSF-deficient plasma contained less cold-insoluble globulin than plasma. Polyacrylamide gel electrophoresis in sodium dodecyl sulfate of clots formed at 2 degrees demonstrated cross-linking of cold-insoluble globulin to fibrin in the normal, but not the FSF-deficient, sample. The serum concentration of alpha2-macroglobulin was the same as the plasma concentration irrespective of the conditions of clotting. Thus, the experiments suggest that FSF catalyzes the cross-linking of cold-insoluble globulin (but not alpha2-macroglobulin) to fibrin in clotting plasma.  相似文献   

16.
Enzymatic cleavage of sialic acid from human blood clotting factor IX results in a loss of factor IX clotting activity. The loss of clotting activity and the rate of release of sialic acid follow the same time courses. Control experiments have ruled out several explanations for the loss of factor IX activity: proteolytic degradation, inhibitory effects of free sialic acid, and non-specific inhibition of the clotting assays. Furthermore, no inhibition was seen when similar enzymatic cleavage was carried out on factor X and factor VIII. Therefore, we suggest that the loss of factor IX activity is the direct result of cleavage of sialic acid from the protein. Most of the inhibition appeared to be an effect on the activity of factor IXa itself, and thus far, little or no effect has been shown on the activation of factor IX to IXa. The structural basis for this unusual effect of sialic acid on protein function currently is being investigated.  相似文献   

17.
The modification of human factor X by 2-sulfo-N-succinimidyl acetate was investigated and shown to produce a factor X species which, when activated, has no activity toward factor VIII. Acylation of factor X (0.9 microM) was carried out in the presence of 1 mM calcium at different reagent concentrations and pH values at 22 degrees C for time courses up to 1 h. Optimal modification was achieved using 0.3 mM reagent at pH 8.0 for 30 min. The modified zymogen, acetylated factor X, is activated at full rates by factor IXa/VIIIa and by the factor X-activating protein of Russell's viper venom. The activated product, acetylated Xa, has an enhanced amidolytic activity (110%) but has almost no detectable clotting activity (0.1%). More importantly, we have shown that acetylated Xa, in contrast to native Xa, does not activate factor VIII. This allows accurate quantitation of factor VIII activation without complications due to positive feedback reactions. We have demonstrated this in an examination of the activation of factor VIII by factor IXa.  相似文献   

18.
Human factor VIII-related protein precipitates with specific heterologous anti-bodies directed against purified factor VIII and supports ristocetin-induced aggregation of washed platelets. We purified human factor VIII from cryoprecipitate by subsequent gel filtration on crosslinked large-pore agarose. Factor VIII-related protein appeared as a large aggregate following electrophoresis on 3% polyacrylamide gels in the presence of sodium dodecyl sulfate (SDS). The same material was separated into multiple bands (molecular weight in excess of several millions) following electrophoresis on SDS-1% agarose gels. After complete disulfide reduction of factor VIII-related protein and electrophoresis on SDS-5% polyacrylamide gels a single subunit chain (Mr approximately equal to 200 000) was revealed. Analysis of this protein, in its non-reduced state, by negative contrast electron microscopy showed filaments of markedly variable size. The calculated molecular weight of such filaments ranged from about 0.6.10(6) to 20.10(6). We conclude that size heterogeneity is an essential feature of human factor VIII-related protein.  相似文献   

19.
The delta-endotoxin crystals of a Bacillus thuringiensis isolate active against the tsetse fly, Glossina morsitans, were isolated from a nutrient broth culture by low speed centrifugation. Analysis of these crystals by denaturing gel electrophoresis revealed that the major component of the crystal delta-endotoxin was a protein of mol. wt ~ 120000. Upon solubilization under alkaline pH and reducing conditions, the crystal yielded a toxin of mol. wt ~ 64 000. Treatment of the toxin with bovine trypsin resulted in a shift in the mol. wt to a toxin of ~ 62000, while treatment with bovine chymotrypsin gave a toxin of ~ 60 000. Methyl green staining revealed that the endotoxin was phosphorylated, while staining with periodic acid schiff reagent showed that it was glycosylated. The carbohydrate moiety was of the high mannose type as shown by staining with fluorescein isothiocyanate conjugated to concanavalin A. Following gel permeation chromatography on a Superose 12 column, the solubilized toxin resolved into six main protein peaks, two of which had trypsin-like activity. The delta-endotoxin caused mortalities in the tsetse, G. morsitans morsitans (LC50 of 42.4mug ml-1) and 4th instar Chilo partellus larvae (LC50 of 53.8 mug ml-1), but had no effect on 3rd instar Aedes aegypti larvae.  相似文献   

20.
Crotalus atrox venom contains agents that render human fibrinogen and plasma incoagulable by thrombin. To elucidate the mechanism of alteration of fibrinogen clotting function by the venom, four immunochemically different proteases, I, II, III, and IV, were purified from the venom by anion-exchange chromatography and column gel filtration. All four proteases had anticoagulant activity rendering purified fibrinogen incoagulable. Proteases I and IV do not affect fibrinogen in plasma but in purified fibrinogen cleave the A alpha chain first and then the B beta and gamma chains. Both enzymes are metalloproteases containing a single polypeptide chain with 1 mol of zinc, are inhibited by (ethylenedinitrilo)tetraacetate and human alpha 2-macroglobulin, and have an optimal temperature of 37 degrees C and an optimal pH of 7. Protease I has a molecular weight (Mr) of 20 000 and is the most cationic. Protease IV has an Mr of 46 000 and is the most anionic glycoprotein with one free sulfhydryl group. Proteases II and III degrade both purified fibrinogen and fibrinogen in plasma, cleaving only the B beta chain and leaving the A alpha and gamma chains intact. Both enzymes are alkaline serine proteases, cleave chromogenic substrates at the COOH terminal of arginine or lysine, are inhibited by diisopropyl fluorophosphate and phenylmethanesulfonyl fluoride, and have an optimal temperature of 50-65 degrees C. Protease II is a single polypeptide chain glycoprotein with an Mr of 31 000. Protease III is a two polypeptide chain protein with an Mr of 24 000, each of the two chains having an Mr of 13 000; its activity is not affected by major protease inhibitors of human plasma. Proteases II and III are enzymes with unique and limited substrate specificity by cleaving only the B beta chain, releasing a peptide of Mr 5000 and generating a fibrinogen derivative of Mr 325 000, with intact A alpha and gamma chains and poor coagulability. Since the two enzymes are active in human plasma and serum, it is postulated that proteases II and III can mediate anticoagulant effects in vivo after envenomation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号