首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
以不同的锆盐为原料,采用固相法及液相法制备LiZr_2(PO_4)_3锂离子固体电解质,通过无压烧结的方式制备得到固体电解质片,并通过X射线衍射(XRD),扫描电子显微镜(SEM),电化学交流阻抗(EIS)对LiZr_2(PO_4)_3锂离子固态电解质进行表征,通过测试结果对比分析,研究锆盐原料的不同对LiZr_2(PO_4)_3锂离子固态电解质结构及性能的影响。结果表明:当以醋酸锆为锆盐原料时,合成的LiZr_2(PO_4)_3以高电导率的菱方相于室温下稳定存在,而其他3种锆盐作原料时合成的LiZr_2(PO_4)_3室温下以三斜相存在。制备的菱方相LiZr_2(PO_4)_3电解质样品片室温锂离子总电导率最大,为2.25×10~(-5) S/cm,且激活能值最小,为0.28 eV。  相似文献   

2.
采用溶胶-凝胶法制备出电化学性能优异的xLiFePO_4·yLi_3V_2(PO_4)_3/C复合正极材料。研究了复合比例对材料的组成、微观结构和电化学性能的影响。结果表明,当LiFePO_4和Li_3V_2(PO_4)_3的摩尔比为7:1,所得复合材料的颗粒尺寸在40~80nm之间,颗粒表面均匀地覆盖了一层无定形碳。在0.1C倍率下的首次放电容量为129.7mAh/g,充放电效率为96.0%;在1C、2C和5C倍率下,该材料的首次放电容量分别为104.6,89.3,71.6mAh/g,30次循环后的容量保持率为99.9%、95.1%和98.6%,表现出了良好的电化学稳定性。  相似文献   

3.
分别采用固相-水热法和球磨法制备磷酸亚铁锂-磷酸钒锂复合正极材料(LiFePO4-Li3V2(PO4)3)。电化学性能测试表明,LiFePO4-Li3V2(PO4)3复合正极材料的电化学性能远远高于 LiFePO4和 Li3V2(PO4)3单独作为正极材料的性能,并且以固相-水热法制备的复合材料性能优于以球磨法制得的复合材料。研究发现 LiFePO4-Li3V2(PO4)3复合材料有 4 个氧化还原峰,相当于 LiFePO4 和 Li3V2(PO4)3 氧化还原峰的叠加。采用固相-水热法制备的LiFePO4-Li3V2(PO4)3 复合材料形貌较为规则,且有新相物质产生,这是导致其电化学性能较好的原因。  相似文献   

4.
使用自制的MgNH_4PO_4/MgHPO_4混合物为掺杂剂,利用碳热还原法制备Li_3Mg_(2x)V_(2-2x)(PO_4)_3/C(x=0,0.05,0.1,0.2)材料。运用XRD、SEM、电化学性能测试等方法研究Mg掺杂对Li_3V_2(PO_4)_3/C的影响。结果表明,适量的Mg掺杂不会改变Li_3V_2(PO_4)_3/C的结构,且有助于减小电荷迁移阻力,由此提高材料的容量,改善循环和倍率性能。当x=0.05时,Li_3Mg_(2x)V_(2-2x)(PO_4)_3/C表现出更好的性能,首次充放电容量为146/128 mA·h/g,在5C电流强度下放电容量约为115 mA·h/g;而当x=0时,两者分别为142/118 mA·h/g和90 mA·h/g。表明适量的Mg掺杂能提高磷酸钒锂的电化学性能。合成的MgNH_4PO_4/MgHPO_4作为一种尝试性镁掺杂剂,能起到良好的掺杂效果。  相似文献   

5.
采用简易的固相反应法制备了(FeCoCrMnCuZn)_3O_4高熵氧化物粉体,采用XRD、SEM、TEM、XPS等方法对其进行表征。结果表明,随着煅烧温度的升高,Fe_2O_3、Cr_2O_3、MnO_2、CuO和ZnO相继固溶进尖晶石结构中;最终,在800℃煅烧2 h可得到单一尖晶石结构(面心立方,Fd-3m)的(FeCoCrMnCuZn)_3O_4氧化物,且各元素在晶粒内分布均匀,为典型的高熵氧化物特征。对合成的高熵氧化物(FeCoCrMnCuZn)_3O_4粉体进行电化学性能分析发现,当电流密度为1 A/g时,质量比电容为152.9 F/g。  相似文献   

6.
采用X射线衍射(XRD)、透射电镜(TEM)和电化学方法,研究Ni2+掺杂对正极材料Li3V2(PO4)3的结构、形貌和电化学性能的影响。结果表明:掺杂适量的Ni2+不会改变Li3V2(PO4)3的单斜晶系结构,但可提高材料的电导率,抑制电池在充放电过程的极化。在室温下,Li3(Ni0.05V0.95)2(PO4)3以0.1C倍率放电的初始比容量为115mA.h/g,放电倍率从0.1C增加到0.4C循环60次后,比容量衰减率仅为2.7%,而未掺杂原样Li3V2(PO4)3的初始比容量为129 mA.h/g,60次循环后比容量衰减率约为30.3%;当放电倍率增至1C时,80次循环后,Li3(Ni0.05V0.95)2(PO4)3比容量为99.8 mA.h/g,而原样的比容量为84.1 mA.h/g;当放电倍率增至5C时,循环120次后,Li3(Ni0.05V0.95)2(PO4)3比容量为67.7 mA.h/g,而原样的比容量降为0。循环伏安和交流阻抗测试表明,Li3(Ni0.05V0.95)2(PO4)3的可逆性明显优于Li3V2(PO4)3的可逆性。  相似文献   

7.
采用流变相法合成得到Li_(1.2+x)Ni_(0.1)Co_(0.2)Mn_(0.05)O_2(x=0, 0.036, 0.060, 0.096),探讨过锂量对结构和电化学性能的影响。X射线衍射(XRD)对样品进行结构分析证明所有样品具有典型的α-NaFeO_2结构和较小的阳离子混排度。扫描电镜(SEM)对样品进行表征证明不同过锂量的材料,颗粒相对均匀,表面光滑。电化学性能测试结果表明:最佳过锂量为x=0.036时,正极材料Li_(1.236)Ni_(0.1)Co_(0.2)Mn_(0.5)O_2在0.05C、2~4.8V测试条件下进行电化学性能测试,25和55℃下该材料初始放电容量分别为215.3和297.1 mAh·g-1,首次库伦效率分别为66.6%和84.6%,0.2 C下循环50次后容量保持率分别为89.0%和87.8%,且x=0.036时该材料具有最佳的倍率性能。  相似文献   

8.
用乙炔碳作为碳源,采用机械活化辅助碳热还原两步法合成xLi_3V_2(PO_4)_3·LiVPO_4F/C复合正极材料。采用XRD、SEM、TEM等技术对样品的晶体结构和微观形貌进行了表征,采用循环伏安法和恒流充放电等测试方法对合成样品的电化学性能进行分析研究。结果表明:xLi_3V_2(PO_4)_3·LiVPO_4F/C复合正极材料兼备了Li_3V_2(PO_4)_3的循环稳定性好、倍率性能佳的优点和LiVPO_4F能量密度高的优势,此外还弥补了Li_3V_2(PO_4)_3在3~4.7 V电压范围充放电时放电电压平台缺失的缺陷。该材料在3~4.7 V之间的循环稳定性较好,在1C倍率下最高放电比容量为119.7 m A·h/g,循环300圈后为97.5 m A·h/g。其倍率性能较好,在0.1C倍率下充放电可获得高达152 m A·h/g的放电比容量,倍率升高到8C时仍能保持100 mA·h/g的放电比容量。  相似文献   

9.
采用溶胶-凝胶法合成Li3V2-2/3xMnx(PO4)3(0≤x≤0.12)。采用XRD、SEM、XPS、恒流充放电和电化学阻抗谱(EIS)研究Mn掺杂对Li3V2(PO4)3/C结构和电化学性能的影响。XRD研究表明:掺杂少量的Mn2+不会影响材料的结构,所有样品均具有单一相态的单斜结构(P21/n空间群)。XPS分析表明:在Li3V1.94Mn0.09(PO4)3/C中,V和Mn的化合价分别为+3和+2,原料中的柠檬酸在煅烧过程中分解成C而残留在Li3V1.94Mn0.09(PO4)3/C中。电化学测试表明:掺杂Mn改善了电极材料的循环性能和倍率性能,正极材料Li3V1.94Mn0.09(PO4)3/C表现出最好的循环稳定性和倍率性能。在40mA/g的放电电流密度下,循环100次后,Li3V1.94Mn0.09(PO4)3/C的放电容量从158.8mA·h/g衰减到120.5mA·h/g,容量保持率为75.9%,而未掺杂样品的放电容量从164.2mA·h/g衰减到72.6mA·h/g,容量保持率为44.2%。当放电电流密度增加到1C时,Li3V1.94Mn0.09(PO4)3/C的初始放电容量仍能达到146.4mA·h/g,循环100次后,放电容量保持为107.5mA·h/g。EIS测试表明,掺杂适量的Mn2+减小了电荷转移阻抗,这有利于Li+的脱嵌。  相似文献   

10.
采用溶胶-凝胶法合成Li_3V_2(PO_4)_3/C正极材料,采用X射线衍射(XRD)、扫描电子显微镜(SEM)、充放电循环测试、电化学阻抗谱(EIS)、循环伏安(CV)等手段研究极片面密度和压实密度对Li_3V_2(PO_4)_3/C电化学性能的影响。结果表明:Li_3V_2(PO_4)_3/C的倍率性能随着面密度的增加而变差,且面密度越大极化现象越严重,20C时放电比容量差距高达22.8(mA·h)/g。EIS分析结果表明:随着面密度的增加,电荷转移阻抗增大,锂离子表观扩散系数降低。当极片压实密度过高或过低时,Li_3V_2(PO_4)_3/C的倍率性能均较差,压力为20 MPa时放电比容量最高,20C时放电比容量为94.0(mA·h)/g,而0和35 MPa时放电比容量仅70(mA·h)/g左右。EIS和CV测试结果表明:极片压实密度较小和较大的情况均不利于电荷和锂离子的转移。  相似文献   

11.
Spherical Li3V2(PO4)3 was synthesized by using N2H4 as reducer. The products were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that single-phase, spherical and well-dispersed Li3V2(PO4)3 has been successfully synthesized in our experimental process. Electrochemical behaviors have been characterized by charge/discharge measurements. The initial discharge capacities of Li3V2(PO4)3 were 123 mAh g−1 in the voltage range of 3.0–4.3 V and 132 mAh g−1 in the voltage range of 3.0–4.8 V.  相似文献   

12.
Carbon-coated Li3V2(PO4)3 cathode materials for lithium-ion batteries were prepared by a carbon-thermal reduction (CTR) method using sucrose as carbon source. The Li3V2(PO4)3/C composite cathode materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrochemical measurement. The results show that the Li3V2(PO4)3 samples synthesized using sucrose as carbon source have the same monoclinic structure as the Li3V2(PO4)3 sample synthesized using acetylene black as carbon source. SEM image exhibits that the particle size is about 1 μm together with homogenous distribution. Electrochemical test shows that the initial discharge capacity of Li3V2(PO4)3 powders is 122 mAh·g−1 at the rate of 0.2C, and the capacity retains 111 mAh−g−1 after 50 cycles.  相似文献   

13.
Li3V2(PO4)3 samples were synthesized by sol-gel route and high temperature solid-state reaction. The influence of Li3V2(PO4)3 as cathode materials for lithium-ion batteries on electrochemical performances was investigated. The structure of Li3V2(PO4)3 as cathode materials for lithium-ion batteries and morphology of Li3V2(PO4)3 were characterized by X-ray diffractometry (XRD) and scanning electron microscopy (SEM). Electrochemical performances were characterized by charge/discharge and AC impedance measurements. Li3V2(PO4)3 with smaller grain size shows better performances in terms of the discharge capacity and cycle stability. The improved electrochemical properties of Li3V2(PO4)3 are attributed to the refined grains and enhanced electrical conductivity. AC impedance measurements also show that the Li3V2(PO4)3 synthesized by sol-gel route exhibits significantly decreased charge-transfer resistance and shortened migration distance of lithium ions.  相似文献   

14.
LiFePO4 thin films have been sputtered from a pure LiFePO4 target onto Ag/SS, Ag/Si3N4/Si and Si3N4/Si substrates. All of the deposited films were annealed at 973 K for 1 hr in H2/Ar (5 %) atmosphere. Substrate induced microstructural and crystallographic evolutions have been observed by a scanning electron microscope and X-ray diffraction. Energy dispersion spectra and X-ray photoelectron spectra revealed that Ag was mixed in the LiFePO4 films deposited on Ag under layers. Ceramic metal composite thin films were obtained. The film conductivity (1 × 10− 3 Scm− 1) is therefore elevated by an order of six, compared with pure LiFePO4 (10− 9 Scm− 1). The electrochemical measurements of the LiFePO4-Ag films showed a flat plateau at 3.4 V (v.s. Li/Li+) and a reversible capacity of 80 mAh/g. Optimization of Ag contents may further improve the discharge capacity.  相似文献   

15.
The multi-walled carbon nanotubes (MWCNTs) modified Li3V2(PO4)3/C composite is synthesized by polyvinyl alcohol (PVA) based carbon-thermal reduction method using MWCNTs as a highly conductive agent. PVA mainly supplies a reductive atmosphere to reduce V5+ and provides a network of carbon to inhibit the aggregation of Li3V2(PO4)3 particles. The amorphous carbon coating and MWCNTs co-modified composite shows excellent high-rate lithium intercalation/deintercalation property and cycling performance between 3.0 and 4.3 V. The discharge capacities of 131.7 and 122.9 mAh g−1 are obtained at rates of 1 C and 10 C, respectively, for the Li3V2(PO4)3/(C + MWCNTs). These improvements are attributed to the valid conducting networks of C + MWCNTs and the reduced Li3V2(PO4)3 particle size by the network carbon from the pyrolysis of PVA.  相似文献   

16.
Eu2+-doped Sr3La(PO4)3 phosphors were synthesized by solid-state reaction method. Their luminescent properties were investigated. The phosphor could be excited by ultraviolet light effectively. The emission spectra exhibit two emission peaks located at 418 nm and 500 nm, respectively. These two peaks originated from two different luminescent centers, respectively. One is nine-coordinated Eu(I) center, other is six-coordinated Eu(II) center. It was found that the doping concentration of Eu2+ ions affected the shape of emission spectra. As the doping concentration increasing, Eu2+ ions are more likely to form Eu(I) luminescent centers and emit purple light.  相似文献   

17.
Flower-like Y2(MoO4)3:Dy3+ phosphors have been synthesized via a co-precipitation approach with the aid of β-cyclodextrin. The crystal structure and morphology of the phosphors were characterized by XRD (X-ray diffraction) and FE-SEM (field emission scanning electron microscopy), respectively. The excitation and emission properties of the phosphors were examined by fluorescence spectroscopy. The dependence of color coordinates on the Dy3+ doping concentration was analyzed. The energy transfer mechanism between Dy3+ ions was studied based on the Huang's theory, I-H and Van Uitert's models. It was concluded simultaneously from these three routes that the electric dipole-dipole interaction between Dy3+ ions is the main physical mechanism for the energy transfers between Dy3+.  相似文献   

18.
New pyrophosphate Sn0.9Sc0.1(P2O7)1−δ was prepared by an aqueous solution method. The structure and conductivity of Sn0.9Sc0.1(P2O7)1−δ have been investigated. XRD analysis indicates that Sn0.9Sc0.1(P2O7)1−δ exhibits a 3 × 3 × 3 super structure. It was found that Sn0.9Sc0.1(P2O7)1−δ prepared by an aqueous method is not conductive. The total conductivity of Sn0.9Sc0.1(P2O7)1−δ in open air is 2.35 × 10−6 and 2.82 × 10−9 S/cm at 900 and 400 °C respectively. In wet air, the total conductivity is about two orders of magnitude higher (8.1 × 10−7 S/cm at 400 °C) than in open air indicating some proton conduction. SnP2O7 and Sn0.92In0.08(P2O7)1−δ prepared by an acidic method were reported fairly conductive but prepared by similar solution methods are not conductive. Therefore, the conductivity of SnP2O7-based materials might be related to the synthetic history. The possible conduction mechanism of SnP2O7-based materials has been discussed in detail.  相似文献   

19.
超级电容器具有比电容高、循环寿命长和绿色无污染的特点,其优异的电化学性能备受关注。本文水热合成了NiMoO4/g-C3N4复合粉体,并将粉体涂覆在泡沫镍上制备了NiMoO4/g-C3N4电极材料。结果表明,NiMoO4/g-C3N4粉体形貌主要为NiMoO4纳米棒和团状g-C3N4,且NiMoO4纳米棒生长在g-C3N4纳米片上。在NiMoO4中加入30at%的g-C3N4能降低电容体系的等效串联电阻和扩散阻抗,有利于氧化还原反应的进行。相比于其他g-C3N4含量的电极材料,g-C3N4含量为30at%的NiMoO4/g-C3N4电极材料具有更高的比电容(584.3F/g)和更好的倍率特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号