首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Corynebacterium glutamicum possesses NAD-independent lactate dehydrogenases. The d-lactate dehydrogenase is consitutive, the l-lactate dehydrogenase is inducible. Enzyme measurements, gel electrophoretic studies and mutant studies suggest that both enzymes are responsible for the oxidation of the chemically synthesized precursor dl--hydroxybutyrate. Mutants with increased d-lactate utilization were selected. In mutant dl-4 the specific activity of the d-lactate dehydrogenase is increased 3 fold. This mutant utilizes the d-isomer of hydroxybutyrate to completion, which does not occur in the wild type. This results in the formation of 103 mmol/l l-isoleucine by mutant dl-4 as compared to 71 mmol/l in its ancestor.  相似文献   

2.
Summary The production of l-phenylalanine from the racemate d,l-phenyllactate in an enzyme membrane reactor has been examined. In a first step the racemate is dehydrogenated to the prochiral intermediate phenylpyruvate by the enzymes d-and l-hydroxyisocaproate dehydrogenase. In a second step phenylpyruvate is reductively aminated to l-phenylalanine by l-phenylalanine dehydrogenase. Both steps are dependent on coenzyme, the first one requires NAD, the second one NADH in stoichiometric amounts; in this way the coenzyme is regenerated and only required catalytically. The coenzyme is covalently bound to polyethylene glyco-20 000 and can thus be retained in the reactor analogously to the three enzymes. In order to optimize the continuous production of l-phenylalanine from d,l-phenyllactate, models of the reaction kinetics and of the reactor system have been set up. By means of the reactor model, we can calculate the optimum ratio of the three enzymes, the optimum coenzyme concentration and the optimum phenylpyruvate concentration in the feed.In this process, at a substrate concentration of 50 mM d,l-phenyllactate we reached a spacetime-yield of 28 g l-Phe/(l*d).Abbreviations PEG polyethylene glycol - d-HicDH d-hydroxyisocaproate dehydrogenase - l-HicDH l-hydroxyisocaproate dehydrogenase - PheDH l-phenylalanine dehydrogenase - V max maximum velocity - K M Michaelis-Menten constant - K l inhibition constant - R1 reaction rate of the d-HicDH forward reaction - R2 reaction rate of the d-HicDH reverse reaction - R3 reaction rate of the l-HicDH forward reaction - R4 reaction rate of the l-HicDH reverse reaction - R5 reaction rate of the PheDH forward reaction - R6 reaction rate of the PheDH reverse reaction - d-PLac d-phenyllactate - l-PLac l-phenyllactate - PPy phenylpyruvate - l-Phe l-phenylalanine - NH4 ammonium - residence time  相似文献   

3.
In Nocardia sp. 239 d-phenylalanine is converted into l-phenylalanine by an inducible amino acid racemase. The further catabolism of this amino acid involves an NAD-dependent l-phenylalanine dehydrogenase. This enzyme was detected only in cells grown on l- or d-phenylalanine and in batch cultures highest activities were obtained at relatively low amino acid concentrations in the medium. The presence of additional carbon- or nitrogen sources invariably resulted in decreased enzyme levels. From experiments with phenylalanine-limited continuous cultures it appeared that the rate of synthesis of the enzyme increased with increasing growth rates. The regulation of phenylalanine dehydrogenase synthesis was studied in more detail during growth of the organism on mixtures of methanol and l-phenylalanine. Highest rates of l-phenylalanine dehydrogenase production were observed with increasing ratios of l-phenylalanine/methanol in the feed of chemostat cultures. Characteristic properties of the enzyme were investigated following its (partial) purification from l- and d-phenylalanine-grown cells. This resulted in the isolation of enzymes with identical properties. The native enzyme had a molecular weight of 42 000 and consisted of a single subunit; it showed activity with l-phenylalanine, phenylpyruvate, 4-hydroxyphenyl-pyruvate, indole-3-pyruvate and -ketoisocaproate, but not with imidazolepyruvate, d-phenylalanine and other l-amino acids tested. Maximum activities with phenylpyruvate (310 mol min-1 mg-1 of purified protein) were observed at pH 10 and 53°C. Sorbitol and glycerol stabilized the enzyme.Abbreviations RuMP ribulose monophosphate - HPS hexulose-6-phosphate synthase - HPT hexulose-6-phosphate isomerase - FPLC fast protein liquid chromatography  相似文献   

4.
The focal point of phenylalanine biosynthesis is a dehydratase reaction which in different organisms may be prephenate dehydratase, arogenate dehydratase, or cyclohexadienyl dehydratase. Gram-positive, Gram-negative, and cyanobacterial divisions of the eubacterial kingdom exhibit different dehydratase patterns. A new extremehalophile isolate, which grows on defined medium and is tentatively designated as Halobacterium vallismortis CH-1, possesses the interlock type of prephenate dehydratase present in Gram-positive bacteria. In addition to the conventional sensitivity to feedback inhibition by l-phenylalanine, the phenomenon of metabolic interlock was exemplified by the sensitivity of prephenate dehydratase to allosteric effects produced by extra-pathway (remote) effectors. Thus, l-tryptophan inhibited activity while l-tyrosine, l-methionine, l-leucine, and l-isoleucine activated the enzyme. l-Isoleucine and l-phenylalanine were effective at M levels; other effectors operated at mM levels. A regulatory mutant selected for resistance to growth inhibition caused by -2-thienylalanine possessed an altered prephenate dehydratase in which a phenomenon of disproportionately low activity at low enzyme concentration was abolished. Inhibition by l-tryptophan was also lost, and activation by allosteric activators was diminished. Not only was sensitivity to feedback inhibition by l-phenylalanine lost, but the mutant enzyme was now activated by this amino acid (a mutation type previously observed in Bacillus subtilis). It remains to be seen whether this type of prephenate dehydratase will prove to be characteristic of all archaebacteria or of some archaebacterial subgroup cluster.  相似文献   

5.
Summary The prephenate dehydratase gene was cloned from a mutant of Brevibacterium lactofermentum, AJ11957 that produced enzyme free from feedback inhibition. The recombinant plasmids pPH11 and pPH14 complemented a phenylalanine auxotroph of B. lactofermentum, A-15, provided the transformant with the desensitized enzyme and caused an increased level of the enzyme compared to that of a wild strain. Plasmid pPH14 was introduced into l-phenylalanine producers genetically induced from B. lactofermentum; MF358 and FP-1 excreting l-tyrosine and anthranilate, respectively, as by-products. Both transformants predominantly accumulated l-phenylalanine at the expense of by-product formation. Co-existence of pPH14 and pTAR16, a recombinant plasmid expressing desensitized 3-deoxy-d-arabino-hepturosonate-7-phosphate synthase had a marked effect on further improvement in l-phenylalanine productivity, accompanied by an increase in the corresponding enzyme activity. The parent, MF358, accumulating 5.5 g/l l-phenylalanine, 6.8 g/l l-tyrosine and 0.3 g/l anthranilate turned into a potent l-phenylalanine producer producing 18.2 g/l l-phenylalanine and 1.0 g/l l-tyrosine by-product. Offprint requests to: Hisao Ito  相似文献   

6.
Summary To establish an efficient production method for l-phenylalanine, the production of l-phenylalanine from phenylpyruvate by Paracoccus denitrificans pFPr-1 containing aminotransferase activity was investigated. By using intact cells, 0.74M l-phenylalanine was produced from 0.8M phenylpyruvate (conversion yield, 92.5%). Moreover, by using immobilized cells with -carrageenan, when the space velocity was 0.1 h-1 at 30°C, 0.135 M l-phenylalanine was produced from 0.15 M phenylpyruvate (conversion yield, 90%). The half-life of the l-phenylalanine-forming activity of the column was estimated to be about 30 days at 30°C.  相似文献   

7.
The ability of Aspergillus fumigatus l-amino acid oxidase (l-aao) to cause the resolution of racemic mixtures of dl-amino acids was investigated with dl-alanine, dl-phenylalanine, dl-tyrosine, and dl-aspartic acid. A chiral column, Crownpak CR+ was used for the analysis of the amino acids. The enzyme was able to cause the resolution of the three dl-amino acids resulting in the production of optically pure d-alanine (100% resolution), d-phenylalanine (80.2%), and d-tyrosine (84.1%), respectively. The optically pure d-amino acids have many uses and thus can be exploited industrially. This is the first report of the use of A. fumigatus l-amino acid oxidase for racemic resolution of dl-amino acids.  相似文献   

8.
To establish an advantageous method for the production of l-amino acids, microbial isomerization of d- and dl-amino acids to l-amino acids was studied. Screening experiments on a number of microorganisms showed that cell suspensions of Pseudomonas fluorescens and P. miyamizu were capable of isomerizing d- and dl-phenylalanines to l-phenylalanine. Various conditions suitable for isomerization by these organisms were investigated. Cells grown in a medium containing d-phenylalanine showed highest isomerization activity, and almost completely converted d- or dl-phenylalanine into l-phenylalanine within 24 to 48 hr of incubation. Enzymatic studies on this isomerizing system suggested that the isomerization of d- or dl-phenylalanine is not catalyzed by a single enzyme, “amino acid isomerase,” but the conversion proceeds by a two step system as follows: d-pheylalanine is oxidized to phenylpyruvic acid by d-amino acid oxidase, and the acid is converted to l-phenylalanine by transamination or reductive amination.  相似文献   

9.
S. K. Goers  R. A. Jensen 《Planta》1984,162(2):117-124
The reaction catalyzed by chorismate mutase (EC 5.4.99.5) is a crucial step for biosynthesis of two aromatic amino acids as well as for the synthesis of phenylpropanoid compounds. The regulatory properties of two chorismate-mutase isoenzymes expressed in Nicotiana silvestris Speg. et Comes are consistent with their differential roles in pathway flow routes ending with l-phenylalanine and l-tyrosine on one hand (isoenzyme CM-1), and ending with secondary metabolites on the other hand (isoenzyme CM-2). Isoenzyme CM-1 was very sensitive to allosteric control by all three aromatic amino acids. At pH 6.1, l-tryptophan was a potent allosteric activator (K a =1.5 M), while feedback inhibition was effected by l-tyrosine (K i =15 M) or by l-phenylalanine (Ki=15 M). At pH 6.1, all three effectors acted competitively, influencing the apparent K m for chorismate. All three allosteric effectors protected isoenzyme CM-1 at pH 6.1 from thermal inactivation at 52° C. l-Tryptophan abolished the weak positive cooperativity of substrate binding found with isoenzyme CM-1 only at low pH. At pH 7.2, the allosteric effects of l-tyrosine and l-tryptophan were only modestly different, in striking contrast to results obtained with l-phenylalanine. At pH 7.2 (i) the K i for l-phenylalanine was elevated over 30-fold to 500 M, (ii) the kinetics of inhibition became non-competitive, and (iii) l-phenylalanine now failed to protect isoenzyme CM-1 against thermal inactivation. l-Phenylalanine may act at different binding sites depending upon the intracellular pH milieu. In-vitro data indicated that the relative ability of allosteric activation to dominate over allosteric inhibition increases markedly with both pH and temperature. The second isoenzyme, CM-2, was inhibited competitively by caffeic acid (K i =0.2 mM). Aromatic amino acids failed to affect CM-2 activity over a broad range of pH and temperature. Inhibition curves obtained in the presence of caffeic acid were sigmoid, yielding an interaction coefficient (from Hill plots) of n=1.8.Abbreviation DAHP synthase 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase  相似文献   

10.
Nocardia sp. 239 is able to use l-tyrosine and both d- and l-phenylalanine as carbon-, energy- and nitrogen sources for growth. The catabolism of these compounds is by way of (4-hydroxy)phenylpyruvate and (4-hydroxy)-phenylacetate as intermediates and the pathways merge at the level of homogentisate. The conversion of the amino acids into (4-hydroxy)phenylpyruvate is catalyzed by an inducible NAD-dependent phenylalanine dehydrogenase and l-tyrosine aminotransferase, respectively. Incubation of the organism in media with l-phenylalanine plus phenyl-pyruvate resulted in diauxic growth, with phenylpyruvate used first. Phenylalanine dehydrogenase activity cold only be detected after depletion of phenylpyruvate, in the ensuing second growth phase on l-phenylalanine. During growth on phenylalanine plus methanol, low levels of phenylalanine dehydrogenase were detected and this resulted in simultaneous utilization of the two substrates. Following diepoxyoctane treatment, mutants of Nocardia sp. 239 affected in phenylalanine and phenylpyruvate degradation were isolated. Double mutants blocked in both phenylalanine dehydrogenase and phenylpyruvate decarboxylase completely failed to catabolize phenylalanine. The absence of these enzymes did not affect growth on tyrosine.Abbreviations RuMP ribulose monophosphate - EMS ethylmethanesulphonate - NTG N-methyl-N-nitro-N-nitrosoguanidine  相似文献   

11.
A gram-positive, mesophilic bacterium which assimilated l-phenylalanine but which failed to utilise l-tyrosine was isolated from soil. The isolate, identified as a strain of Bacillus carotarum, converted l-phenylalanine to phenylpyruvate with the initial step catalysed by an inducible, intracellular enzyme which possessed l-phenylalanine oxidase activity. Phenylalanine oxidase has not been previously reported in Gram-positive bacteria, although there are a few examples of non-specific l-amino acid oxidases with activity towards l-phenylalanine. The isolate grew abundantly on complex media but failed to synthesise significant amounts of the enzyme in the absence of l-phenylalanine. The highest enzyme levels were achieved in a chemically defined minimal salts medium containing the amino acid at 10 g/l as the primary carbon and energy source.  相似文献   

12.
Recombinant strains of Escherichia coli K-12 for the production of the three aromatic amino acids (l-phenylalanine, l-tryptophan, l-tyrosine) have been constructed. The largest demand is for l-phenylalanine (l-Phe), as it can be used as a building block for the low-calorie sweetener, aspartame. Besides l-Phe, an increasing number of shikimic acid pathway intermediates can be produced from appropriate E. coli mutants with blocks in this pathway. The last common intermediate, chorismate, in E. coli not only serves for production of aromatic amino acids but can also be used for high-titer production of non-aromatic compounds, e.g., cyclohexadiene-transdiols. In an approach to diversity-oriented metabolic engineering (metabolic grafting), platform strains with increased flux through the general aromatic pathway were created by suitable gene deletions, additions, or rearrangements. Examples for rational strain constructions for l-phenylalanine and chorismate derivatives are given with emphasis on genetic engineering. As a result, l-phenylalanine producers are available, which were derived through several defined steps from E. coli K-12 wild type. These mutant strains showed l-phenylalanine titers of up to 38 g/l of l-phenylalanine (and up to 45.5 g/l using in situ product recovery). Likewise, two cyclohexadiene-transdiols could be recovered.  相似文献   

13.
Summary Growth and l-threonine productivity of l-threonine producer Escherichia coli H-4290 were inhibited by precursor amino acids, l-homoserine and l-aspartate. l-Threonine hyper-producers were isolated among the mutants resistant to l-homoserine and l-aspartate. Mutants H-4351 (Homr) and H-4578 (Homr, Aspr) accumulated 22.2 g/l and 24.3 g/l of l-threonine in test tube cultures, while the parental strain H-4290 accumulated 18.2 g/l. The enzyme level of aspartokinase I (first enzyme of the threonine operon) was enhanced 2.3 times (H-4351) and 3 times (H-4578) that of H-4290. Mutant H-4578 accumulated 76 g/l of l-threonine in a 2-l jar fermentor after 75 h cultivation.Abbreviations DAP diaminopimeric acid - Met l poor growth in methionine-free medium - AHV -amino--hydroxyvaleric acid - Thr-N- lack of ability to utilize l-threonine as a nitrogen source - Rif rifampicin - Lys+Metr resistant to l-lysine and dl-methionine  相似文献   

14.
l-Lysine is known to stimulate production of -lactam antibiotics byStreptomyces clavuligerus via provision of the lysine breakdown product,l--aminoadipic acid, which is a limiting precursor. Previous investigations utilized levels of 10–20 mMl-lysine as an addition to chemically-defined media resulting in 50–100% improvement in antibiotic production. We were surprised to note that as the concentration was further increased, the organism responded by producing even higher titers of antibiotics. The optimum concentration of 100 mMl-lysine yielded an approximate 500% increase in production with only minor effects on growth.dl- andd-lysine also exerted enhancements suggesting the presence of a lysine racemase or some other route fromd-lysine tol--aminoadipate in this organism;d-lysine was considerably less potent thandl- orl-lysine.Participant in the MIT Undergraduate Research Opportunities Programs (UROP)  相似文献   

15.
The reaction conditions for the production of l-tryptophan from dl-5-indolyl- methylhydantoin by Flavobacterium sp. AJ-3940, and the cultural conditions for the formation of the enzyme involved by this bacterium were investigated. The optimal pH of this reaction was around 8.5 and the optimal temperature was between 45 to 55°C. The amount of l-tryptophan produced was remarkably increased by the addition of inosine, which formed a water insoluble adduct with l-tryptophan, to the reaction mixture because of the release of end-product inhibition by l-tryptophan. This enzyme was inducibly and intracellularly produced by Flavobacterium sp. AJ-3940 in proportion to the increase in cell growth. Cells showing high activity were obtained using a medium containing 5 g glucose, 5 g (NH4)2SO4, 1 g KH2PO4, 3 g K2HPO4, 0.1 g MgSO4 · 7H2O, 0.01 g CaCl2 · 2H2O, 50 ml corn steep liquor and 3.5 g dl-5-indolylmethylhydantoin in a total volume of 1 liter (pH 7.0). Under the best conditions, 43 mg/ml of l-tryptophan was produced from 50 mg/ml of dl-5-indolylmethylhydantoin with a molar yield of 97% in the presence of cells of Flavobacterium sp. AJ-3940. In addition, other l-aromatic amino acids such as l-phenylalanine, l-tyrosine, l-DOPA and related l-amino acids were also produced from the corresponding 5-substituted hydantoins by this bacterium containing the l-tryptophan-producing enzyme induced by dl-5-indolylmethylhydantoin.  相似文献   

16.
Summary The decarboxylations of sublimated solidd- andl-leucine by nonpolarized -rays give quite different quantum yields, indicating significant selection. The G(CO2) value for thed-isomer is higher than that for thel-isomer by a factor of 2 within a dose range of 103–105 rads. The G value for thedl-racemate is close to that of thed-isomer. The effect vanishes if instead of sublimation, crystallization from aqueous solution is the last preparation step. Our results on sublimated leucine agree well with those reported for -induced decarboxylation of solid -phenylalanine prepared similarly by sublimation. The asymmetry increases with longer cooling periods after irradiation. An intrinsic energy difference due to parity nonconservation between enantiomers is discussed as a possible stereoselective mechanism, with special reference to the prebiotic origin of asymmetry in living matter. Other possible sources of the observed effects are also discussed.  相似文献   

17.
Summary Aminopterin (10 g/ml) was found to inhibit the formation of 5-hydroxymethylcytosine (HMC), a constituent of mildiomycin, without affecting the growth ofStreptoverticillium rimofaciens. This was available for selecting high-producing mutants.d-Cycloserine caused its morphological mutations at high frequency. In addition, mildiomycin (MIL) production varied widely among the strains picked up from colonies that developed on agar medium containing cycloserine at the inhibitory concentration to the growth. Consequently, we selected the mutants which were capable of producing MIL on agar medium containing 10 g/ml of aminopterin, among mutants enriched by cycloserine. A high-producing mutant thus obtained, C R 4 -257, exhibited higher enzymatic activity of the HMC formation and higher resistance todl-serine hydroxamate than the original strain.l-Canavanine resistant mutants were furthermore selected to enhance the biosynthetic activity of the arginine-like moiety of MIL. Among them, we finally obtained an excellent mutant, CVR-48, with an MIL production 2.6 times that of the original strain,S. rimofaciens B-98891.  相似文献   

18.
Injection ofl-p-tyrosine (800 mg/kg, 2 h) increased the mouse striatalpara-hydroxyphenylacetic acid (p-HPAA) concentrations. A smaller dose ofd,l-m-tyrosine (20 mg/kg, 2h) produced a larger increase in mouse striatalmeta-hydroxyphenylacetic acid (m-HPAA) concentrations. The administration ofl-phenylalanine to mice caused a slight increase in thep-HPAA concentrations in the corpus striatum after 2h while a larger dose ofl-phenylalanine (800 mg/kg) produced a greater increase. Eight hours followingl-phenylalanine injection,p-HPAA concentrations were still elevated. Withd-phenylalanine a significant increase was observed at eight hours after drug administration.Two drugs which reduce dopamine synthesis, -methyl-para-tyrosine and apomorphine, decreasedm-HPAA striatal concentrations without affectingp-HPAA concentrations. From these results, it is proposed that tyrosine hydroxylase activity determinesp-HPAA concentrations by regulatingp-tyrosine availability. This enzyme may also synthesizem-tyrosine which is subsequently decarboxylated to formm-tyramine and then oxidatively deaminated to formm-HPAA.  相似文献   

19.
Summary Further steps required for overproduction of aromatic amino acids by a mutant strain of Nocardia sp. 239 (Noc 87-13), unable to grow on l-phenylalanine as a sole carbon and energy source, were investigated. A number of analogues of the aromatic amino acids displayed severe inhibitory effects on the activities of regulatory enzymes in the biosynthetic pathway and growth of the organism in glucose mineral medium. l-Tryptophane analogues strongly inhibited 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase activity. l-Tyrosine analogues especially inhibited DAHP synthase and chorismate mutase, whereas l-phenylalanine analogues strongly inhibited chorismate mutase and prephenate dehydratase activity. Addition of the aromatic amino acids and their precursors chorismate, 4-hydroxyphenylpyruvate, phenylpyruvate and anthranilate, to the medium counteracted the growth inhibitory effect of specific analogues. The data indicate that ortho- (OFP) and para-fluoro-d,l-phenylalanine (PFP), and l-phenylalanine amide, are the most suitable analogues for the isolation of feedback-inhibition-insensitive prephenate dehydratase mutants. Attempts to isolate l-tyrosine and l-trytophane auxotrophic mutants were only successful in the latter case, resulting in the selection of a stable anthranilate synthase-negative mutant (Noc 87-13-14). Uptake of aromatic amino acids in Nocardia sp. 239 most likely involves a common transport system. This necessitates the use of anthranilate, rather than l-trytophane, as a supplement during the isolation of l-tyrosine auxotrophic and OFP- and/or PFP-resistant mutant derivative strains of Noc 87-13-14. Offprint requests to: L. Dijkhuizen  相似文献   

20.
Radiolabeled amino acids (l-U[C14]alanine,d-U[C14]alanine,l-U[C14]threonine, andl-U[C14]phenylalanine) were exponentially incorporated into the trichloroacetic acid (TCA)-insoluble material (whole cells) ofMycobacterium avium during the first 30–60 min of labeling. Bacteria labeled for 48 h were extracted with chloroform-methanol (21 vol/vol). The thin layer chromatography (TLC) analysis of native lipids showed that mycoside C was labeled by the amino acids used.d-cycloserine (d-CS) and other amino acid analogs were examined as potential inhibitors of mycoside C biosynthesis. It was found thatd-CS caused about 27% inhibition, whereaso-,p-, andm-fluoro-dl-phenylalanine (Fl-phe) caused 80%–90% inhibition of the mycoside C biosynthesis. Judging from the data on inhibition experiments, it was concluded that the mycoside C biosynthesis started from the fatty acyl end and proceeded by the stepwise addition ofd-phenylalanine,d-allo-threonine, andd-alanine. Thed-alanyl-d-alanine peptidoglycan intermediate did not seem to serve as a donor ofd-alanine for mycoside C biosynthesis. Ultrastructural observation of the bacteria treated withd-CS showed only partial alteration of the outer wall layer, whereasm-Fl-phe treatment caused profound alterations. Successive transfers of the bacteria in growth medium supplemented withm-Fl-phe resulted in extensive disorganization of the outer layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号