首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
H9N2 avian influenza virus (AIV) has become endemic in many countries, causing great economic losses when co-infected with other pathogens. So far, several live vaccines based on Newcastle disease virus (NDV) vectors expressing influenza hemagglutinin (HA) have been developed. However, the thermostable recombinant NDV is rarely reported. In this study, using a thermostable NDV rAHR09 strain as the vector, three recombinant NDVs expressing native HA, chimeric HA ectodomain with transmembrane domain/C-terminal cytoplasmic tail domain from fusion protein of NDV, and HA ectodomain were generated, designated rAHR09-HA, rAHR09-HAF, and rAHR09-HAE. The MDT value of three recombinant NDVs was above 120 h, their ICPI value was about 0.03, and the recombinant NDVs were still infectious when treated for 100 min under 56 °C, which demonstrated that the recombinant NDVs kept the lentogenic and thermostable nature of rAHR09. The immunization data showed that rAHR09-HA and rAHR09-HAF induced a higher HI antibody titer against H9N2 AIV and NDV. After being challenged with H9N2 AIV, the rAHR09-HA and rAHR09-HAF could significantly reduce the virus shedding in cloacal and tracheal swab samples. Our results suggest that rAHR09-HA and rAHR09-HAF might be vaccine candidates against H9N2 AIV.  相似文献   

3.
Infection of poultry with diverse lineages of H5N2 avian influenza viruses has been documented for over three decades in different parts of the world, with limited outbreaks caused by this highly pathogenic avian influenza virus. In the present study, three avian H5N2 influenza viruses, A/chicken/Shijiazhuang/1209/2013, A/chicken/Chiping/0321/2014, and A/chicken/Laiwu/0313/2014, were isolated from chickens with clinical symptoms of avian influenza. Complete genomic and phylogenetic analyses demonstrated that all three isolates are novel recombinant viruses with hemagglutinin (HA) and matrix (M) genes derived from H5N1, and remaining genes derived from H9N2-like viruses. The HA cleavage motif in all three strains (PQIEGRRRKR/GL) is characteristic of a highly pathogenic avian influenza virus strain. These results indicate the occurrence of H5N2 recombination and highlight the importance of continued surveillance of the H5N2 subtype virus and reformulation of vaccine strains.  相似文献   

4.
Recent outbreaks of highly pathogenic avian influenza (HPAI) viruses in poultry and their threatening zoonotic consequences emphasize the need for effective control measures. Although vaccination of poultry against avian influenza provides a potentially attractive control measure, little is known about the effect of vaccination on epidemiologically relevant parameters, such as transmissibility and the infectious period. We used transmission experiments to study the effect of vaccination on the transmission characteristics of HPAI A/Chicken/Netherlands/03 H7N7 in chickens. In the experiments, a number of infected and uninfected chickens is housed together and the infection chain is monitored by virus isolation and serology. Analysis is based on a stochastic susceptible, latently infected, infectious, recovered (SEIR) epidemic model. We found that vaccination is able to reduce the transmission level to such an extent that a major outbreak is prevented, important variables being the type of vaccine (H7N1 or H7N3) and the moment of challenge after vaccination. Two weeks after vaccination, both vaccines completely block transmission. One week after vaccination, the H7N1 vaccine is better than the H7N3 vaccine at reducing the spread of the H7N7 virus. We discuss the implications of these findings for the use of vaccination programs in poultry and the value of transmission experiments in the process of choosing vaccine.  相似文献   

5.
Please cite this paper as: Nang et al. (2013) Live attenuated H5N1 vaccine with H9N2 internal genes protects chickens from infections by both Highly Pathogenic H5N1 and H9N2 Influenza Viruses. Influenza and Other Respiratory Viruses 7(2) 120–131. Background The highly pathogenic H5N1 and H9N2 influenza viruses are endemic in many countries around the world and have caused considerable economic loss to the poultry industry. Objectives We aimed to study whether a live attenuated H5N1 vaccine comprising internal genes from a cold‐adapted H9N2 influenza virus could protect chickens from infection by both H5N1 and H9N2 viruses. Methods We developed a cold‐adapted H9N2 vaccine virus expressing hemagglutinin and neuraminidase derived from the highly pathogenic H5N1 influenza virus using reverse genetics. Results and Conclusions Chickens immunized with the vaccine were protected from lethal infections with homologous and heterologous H5N1 or H9N2 influenza viruses. Specific antibody against H5N1 virus was detected up to 11 weeks after vaccination (the endpoint of this study). In vaccinated chickens, IgA and IgG antibody subtypes were induced in lung and intestinal tissue, and CD4+ and CD8+ T lymphocytes expressing interferon‐gamma were induced in the splenocytes. These data suggest that a live attenuated H5N1 vaccine with cold‐adapted H9N2 internal genes can protect chickens from infection with H5N1 and H9N2 influenza viruses by eliciting humoral and cellular immunity.  相似文献   

6.
Background Currently, Asian lineage highly pathogenic avian influenza (HPAI) H5N1 has become widespread across continents. These viruses are persistently circulating among poultry populations in endemic regions, causing huge economic losses, and raising concerns about an H5N1 pandemic. To control HPAI H5N1, effective vaccines for poultry are urgently needed. Objective In this study, we developed HPAI virus‐like particle (VLP) vaccine as a candidate poultry vaccine and evaluated its protective efficacy and possible application for differentiating infected from vaccinated animals (DIVA). Methods Specific pathogen‐free chickens received a single injection of HPAI H5N1 VLP vaccine generated using baculovirus expression vector system. Immunogenicity of VLP vaccines was determined using hemagglutination inhibition (HI), neuraminidase inhibition (NI), and ELISA test. Challenge study was performed to evaluate efficacy of VLP vaccines. Results and Conclusions A single immunization with HPAI H5N1 VLP vaccine induced high levels of HI and NI antibodies and protected chickens from a lethal challenge of wild‐type HPAI H5N1 virus. Viral excretion from the vaccinated and challenged group was strongly reduced compared with a mock‐vaccinated control group. Furthermore, we were able to differentiate VLP‐vaccinated chickens from vaccinated and then infected chickens with a commercial ELISA test kit, which offers a promising strategy for the application of DIVA concept.  相似文献   

7.
This study presents the isolation of influenza A(H5N8) virus clade 2.3.4.4b from a poultry worker during an outbreak of highly pathogenic avian influenza A(H5N8) among chickens at a poultry farm in Astrakhan, Russia in December 2020. Nasopharyngeal swabs collected from seven poultry workers were positive for influenza A(H5N8), as confirmed by RT-PCR and sequencing. The influenza A(H5N8) virus was isolated from one of the human specimens and characterised. Sporadic human influenza A(H5)2.3.4.4. infections represent a possible concern for public health.  相似文献   

8.
In March 2017, highly pathogenic (HP) and low pathogenic (LP) avian influenza virus (AIV) subtype H7N9 were detected from poultry farms and backyard birds in several states in the southeast United States. Because interspecies transmission is a known mechanism for evolution of AIVs, we sought to characterize infection and transmission of a domestic duck-origin H7N9 LPAIV in chickens and genetically compare the viruses replicating in the chickens to the original H7N9 clinical field samples used as inoculum. The results of the experimental infection demonstrated virus replication and transmission in chickens, with overt clinical signs of disease and shedding through both oral and cloacal routes. Unexpectedly, higher levels of virus shedding were observed in some cloacal swabs. Next generation sequencing (NGS) analysis identified numerous non-synonymous mutations at the consensus level in the polymerase genes (i.e., PA, PB1, and PB2) and the hemagglutinin (HA) receptor binding site in viruses recovered from chickens, indicating possible virus adaptation in the new host. For comparison, NGS analysis of clinical samples obtained from duck specimen collected during the outbreak indicated three polymorphic sides in the M1 segment and a minor population of viruses carrying the D139N (21.4%) substitution in the NS1 segment. Interestingly, at consensus level, A/duck/Alabama (H7N9) had isoleucine at position 105 in NP protein, similar to HPAIV (H7N9) but not to LPAIV (H7N9) isolated from the same 2017 influenza outbreak in the US. Taken together, this work demonstrates that the H7N9 viruses could readily jump between avian species, which may have contributed to the evolution of the virus and its spread in the region.  相似文献   

9.
H7N9亚型禽流感病毒(H7N9 AIV)是危害家禽养殖的主要病原体之一,其不仅制约家禽养殖业的健康发展,而且表现出对人类较强的传染性和较高的致死率,严重威胁公共卫生安全。2013年我国首次报道人类感染H7N9 AIV事件,病毒溯源发现家禽体内存在H7N9 AIV,但无明显症状。2017年,H7N9 AIV出现变异株,表现出对家禽的高致病性,随后我国推出H5/H7二价苗,并在全国实施家禽强制免疫接种,有效控制了H7N9 AIV在我国家禽中的流行以及人类感染事件的发生,成为我国控制人兽共患传染病的成功案例。由于我国家禽养殖和AIV的复杂性,全面和持续的流行病学监测对于H7N9禽流感的防控仍然至关重要。本文针对2013年至今H7N9 AIV的流行特征、遗传变异特点及疫苗研究等内容作简要论述,以期为禽流感的预防和控制提供参考。  相似文献   

10.
Background Although H5N1 avian influenza viruses pose the most obvious imminent pandemic threat, there have been several recent zoonotic incidents involving transmission of H7 viruses to humans. Vaccines are the primary public health defense against pandemics, but reliance on embryonated chickens eggs to propagate vaccine and logistic problems posed by the use of new technology may slow our ability to respond rapidly in a pandemic situation. Objectives We sought to generate an H7 candidate vaccine virus suitable for administration to humans whose generation and amplification avoided the use of eggs. Methods We generated a suitable H7 vaccine virus by reverse genetics. This virus, known as RD3, comprises the internal genes of A/Puerto Rico/8/34 with surface antigens of the highly pathogenic avian strain A/Chicken/Italy/13474/99 (H7N1). The multi‐basic amino acid site in the HA gene, associated with high pathogenicity in chickens, was removed. Results The HA modification did not alter the antigenicity of the virus and the resultant single basic motif was stably retained following several passages in Vero and PER.C6 cells. RD3 was attenuated for growth in embryonated eggs, chickens, and ferrets. RD3 induced an antibody response in infected animals reactive against both the homologous virus and other H7 influenza viruses associated with recent infection by H7 viruses in humans. Conclusions This is the first report of a candidate H7 vaccine virus for use in humans generated by reverse genetics and propagated entirely in mammalian tissue culture. The vaccine has potential use against a wide range of H7 strains.  相似文献   

11.
Since the H7N9 avian influenza virus emerged in China in 2013, there have been five seasonal waves which have shown human infections and caused high fatality rates in infected patients. A multibasic amino acid insertion seen in the HA of current H7N9 viruses occurred through natural evolution and reassortment, and created a high pathogenicity avian influenza (HPAI) virus from the low pathogenicity avian influenza (LPAI) in 2017, and significantly increased pathogenicity in poultry, resulting in widespread HPAI H7N9 in poultry, which along with LPAI H7N9, contributed to the severe fifth seasonal wave in China. H7N9 is a novel reassorted virus from three different subtypes of influenza A viruses (IAVs) which displays a great potential threat to public health and the poultry industry. To date, no sustained human-to-human transmission has been recorded by the WHO. However, the high ability of evolutionary adaptation of H7N9 and lack of pre-existing immunity in humans heightens the pandemic potential. Changes in IAVs proteins can affect the viral transmissibility, receptor binding specificity, pathogenicity, and virulence. The multibasic amino acid insertion, mutations in hemagglutinin, deletion and mutations in neuraminidase, and mutations in PB2 contribute to different virological characteristics. This review summarized the latest research evidence to describe the impacts of viral protein changes in viral adaptation and pathogenicity of H7N9, aiming to provide better insights for developing and enhancing early warning or intervention strategies with the goal of preventing highly pathogenic IAVs circulation in live poultry, and transmission to humans.  相似文献   

12.
We evaluated the potential for avian-to-human transmission of low pathogenic avian influenza (LPAI) and highly pathogenic avian influenza (HPAI) H7N1 and LPAI H7N3 viruses that were responsible for several outbreaks of influenza in poultry in Italy between 1999 and 2003. A serological survey of poultry workers was conducted by use of a combination of methods. Evidence of anti-H7 antibodies was observed in 3.8% of serum samples collected from poultry workers during the period in 2003 when LPAI H7N3 virus was circulating. These findings highlight the need for surveillance in people occupationally exposed to avian influenza viruses, so that they can be monitored for the risk of avian-to-human transmission during outbreaks of avian influenza caused by both LPAI and HPAI viruses.  相似文献   

13.
The evolution of H5N1 influenza viruses in ducks in southern China   总被引:68,自引:0,他引:68       下载免费PDF全文
The pathogenicity of avian H5N1 influenza viruses to mammals has been evolving since the mid-1980s. Here, we demonstrate that H5N1 influenza viruses, isolated from apparently healthy domestic ducks in mainland China from 1999 through 2002, were becoming progressively more pathogenic for mammals, and we present a hypothesis explaining the mechanism of this evolutionary direction. Twenty-one viruses isolated from apparently healthy ducks in southern China from 1999 through 2002 were confirmed to be H5N1 subtype influenza A viruses. These isolates are antigenically similar to A/Goose/Guangdong/1/96 (H5N1) virus, which was the source of the 1997 Hong Kong "bird flu" hemagglutinin gene, and all are highly pathogenic in chickens. The viruses form four pathotypes on the basis of their replication and lethality in mice. There is a clear temporal pattern in the progressively increasing pathogenicity of these isolates in the mammalian model. Five of six H5N1 isolates tested replicated in inoculated ducks and were shed from trachea or cloaca, but none caused disease signs or death. Phylogenetic analysis of the full genome indicated that most of the viruses are reassortants containing the A/Goose/Guangdong/1/96-like hemagglutinin gene and the other genes from unknown Eurasian avian influenza viruses. This study is a characterization of the H5N1 avian influenza viruses recently circulating in ducks in mainland China. Our findings suggest that immediate action is needed to prevent the transmission of highly pathogenic avian influenza viruses from the apparently healthy ducks into chickens or mammalian hosts.  相似文献   

14.
Jianfeng Zhang 《Viruses》2012,4(11):2711-2735
The emergence of a highly pathogenic avian influenza virus H5N1 has increased the potential for a new pandemic to occur. This event highlights the necessity for developing a new generation of influenza vaccines to counteract influenza disease. These vaccines must be manufactured for mass immunization of humans in a timely manner. Poultry should be included in this policy, since persistent infected flocks are the major source of avian influenza for human infections. Recombinant adenoviral vectored H5N1 vaccines are an attractive alternative to the currently licensed influenza vaccines. This class of vaccines induces a broadly protective immunity against antigenically distinct H5N1, can be manufactured rapidly, and may allow mass immunization of human and poultry. Recombinant adenoviral vectors derived from both human and non-human adenoviruses are currently being investigated and appear promising both in nonclinical and clinical studies. This review will highlight the current status of various adenoviral vectored H5N1 vaccines and will outline novel approaches for the future.  相似文献   

15.
16.
In Egypt, efforts to control highly pathogenic H5N1 avian influenza virus in poultry and in humans have failed despite increased biosecurity, quarantine, and vaccination at poultry farms. The ongoing circulation of HP H5N1 avian influenza in Egypt has caused >100 human infections and remains an unresolved threat to veterinary and public health. Here, we describe that the failure of commercially available H5 poultry vaccines in Egypt may be caused in part by the passive transfer of maternal H5N1 antibodies to chicks, inhibiting their immune response to vaccination. We propose that the induction of a protective immune response to H5N1 is suppressed for an extended period in young chickens. This issue, among others, must be resolved and additional steps must be taken before the outbreaks in Egypt can be controlled.  相似文献   

17.
Since 2003, the number of human cases of infections with highly pathogenic avian influenza viruses of the H5N1 subtype is still increasing, and, therefore, the development of safe and effective vaccines is considered a priority. However, the global production capacity of conventional vaccines is limited and insufficient for a worldwide vaccination campaign. In the present study, an alternative H5N1 vaccine candidate based on the replication-deficient modified vaccinia virus Ankara (MVA) was evaluated. C57BL/6J mice were immunized twice with MVA expressing the hemagglutinin (HA) gene from influenza virus A/Hongkong/156/97 (MVA-HA-HK/97) or A/Vietnam/1194/04 (MVA-HA-VN/04). Subsequently, recombinant MVA-induced protective immunity was assessed after challenge infection with 3 antigenically distinct strains of H5N1 influenza viruses: A/Hongkong/156/97, A/Vietnam/1194/04, and A/Indonesia/5/05. Our data suggest that recombinant MVA expressing the HA of influenza virus A/Vietnam/1194/04 is a promising alternative vaccine candidate that could be used for the induction of protective immunity against various H5N1 influenza strains.  相似文献   

18.
In current seasonal influenza vaccines, neutralizing antibody titers directed against the hemagglutinin surface protein are the primary correlate of protection. These vaccines are, therefore, quantitated in terms of their hemagglutinin content. Adding other influenza surface proteins, such as neuraminidase and M2e, to current quadrivalent influenza vaccines would likely enhance vaccine efficacy. However, this would come with increased manufacturing complexity and cost. To address this issue, as a proof of principle, we have designed genetic fusions of hemagglutinin ectodomains from H3 and H1 influenza A subtypes. These recombinant H1-H3 hemagglutinin ectodomain fusions could be transiently expressed at high yield in mammalian cell culture using Expi293F suspension cells. Fusions were trimeric, and as stable in solution as their individual trimeric counterparts. Furthermore, the H1-H3 fusion constructs were antigenically intact based on their reactivity with a set of conformation-specific monoclonal antibodies. H1-H3 hemagglutinin ectodomain fusion immunogens, when formulated with the MF59 equivalent adjuvant squalene-in-water emulsion (SWE), induced H1 and H3-specific humoral immune responses equivalent to those induced with an equimolar mixture of individually expressed H1 and H3 ectodomains. Mice immunized with these ectodomain fusions were protected against challenge with heterologous H1N1 (Bel/09) and H3N2 (X-31) mouse-adapted viruses with higher neutralizing antibody titers against the H1N1 virus. Use of such ectodomain-fused immunogens would reduce the number of components in a vaccine formulation and allow for the inclusion of other protective antigens to increase influenza vaccine efficacy.  相似文献   

19.
Highly pathogenic avian influenza A viruses of subtypes H5 and H7 are the causative agents of fowl plague in poultry. Influenza A viruses of subtype H5N1 also caused severe respiratory disease in humans in Hong Kong in 1997 and 2003, including at least seven fatal cases, posing a serious human pandemic threat. Between the end of February and the end of May 2003, a fowl plague outbreak occurred in The Netherlands. A highly pathogenic avian influenza A virus of subtype H7N7, closely related to low pathogenic virus isolates obtained from wild ducks, was isolated from chickens. The same virus was detected subsequently in 86 humans who handled affected poultry and in three of their family members. Of these 89 patients, 78 presented with conjunctivitis, 5 presented with conjunctivitis and influenza-like illness, 2 presented with influenza-like illness, and 4 did not fit the case definitions. Influenza-like illnesses were generally mild, but a fatal case of pneumonia in combination with acute respiratory distress syndrome occurred also. Most virus isolates obtained from humans, including probable secondary cases, had not accumulated significant mutations. However, the virus isolated from the fatal case displayed 14 amino acid substitutions, some of which may be associated with enhanced disease in this case. Because H7N7 viruses have caused disease in mammals, including horses, seals, and humans, on several occasions in the past, they may be unusual in their zoonotic potential and, thus, form a pandemic threat to humans.  相似文献   

20.
Influenza A virus continue to cause widespread morbidity and mortality. The unprecedented spread of highly pathogenic avian influenza virus subtype H5N1 in Egypt is threatening poultry and public health systems. Effective diagnosis and control management are needed to control the disease. To this end, polyclonal antibodies (PAbs) were developed against the H5N1 avian influenza virus (AIV) and used in an enzyme-linked immunosorbent assay (ELISA) to detect the H5 viral antigen. A group of rabbits were immunized with H5N1 vaccine to obtain PAbs as the detector antibody after conjugation with horse radish peroxidase and fluorescein isothiocyanate (FITC). The conjugated PAbs proved to be specific for the detection of AIV in field specimens, and results were confirmed using reference antisera obtained from Veterinary Lab in Weybridge. Specimens collected from different governorates of Egypt and tested positive for AIV by haemagglutination test were used to evaluate the produced PAbs. The detection limit of ELISA using the prepared peroxidase conjugated PAbs was 1:100,000, while the limit using fluorescein conjugated PAbs was 1:10,000. Extracts from pharyngeal-tracheal mucus of apparently healthy chickens mixed with H5 AIVs also yielded positive signals in ELISA. Such data suggest that these PAbs are useful in the surveillance and diagnosis of AIV in birds in Egypt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号