首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
采用水热法分别制备了氮、磷、硫等杂原子掺杂的三维石墨烯水凝胶电极材料。利用扫描电子显微镜(SEM)、透射电镜(TEM)、拉曼光谱仪、X射线衍射仪(XRD)和光电子能谱仪(XPS)对材料的微观结构进行了分析,并利用电化学方法对材料的电化学性能进行了研究。结果表明:氮、磷、硫等杂原子掺杂入石墨烯晶格,掺杂的石墨烯呈现三维多孔层状形貌。杂原子的掺杂均有利于提高石墨烯的电化学性能,其中以磷掺杂石墨烯电极材料的性能最佳,原子半径最大的P掺杂使石墨烯晶格畸变加剧,比表面积显著增大进而保证了电解质在材料中的快速嵌入和脱出。在1 mol/L H_2SO_4的电解液中,电流密度为1 mA/cm~2时,其比容量388 F/g,组装成对称双电极电池装置,其能量密度在1 A/g的电流密度下可达到25.2 Wh/kg。优异的电容性能主要源于杂原子掺杂所提供的法拉第赝电容。  相似文献   

2.
唐琴  周大利  陈先勇 《材料导报》2021,35(22):22016-22021
以废弃的清江河虾头胸甲为原材料,采用简便的一步二氧化碳炭化活化处理工艺,使头胸甲中的部分氮/氧元素以原位掺杂的形式保留,同时以头胸甲叠层中均匀分布的碳酸钙作为原位模板,快速制得富氮/氧共掺杂分级多孔叠层炭片材料.用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射仪(XRD)、X射线光电子能谱仪(XPS)、激光拉曼光谱仪和比表面积测定仪等对样品进行了表征.结果显示,富氮/氧共掺杂分级多孔叠层炭片具有相互贯通的"特大孔-大孔-介孔-微孔"多级孔道,并具有高的比表面积(1012.2 m2/g)和孔体积(0.975 cm3/g)、高的氮含量9.15%(质量分数)和氧含量26.0%(质量分数).基于这些独特的结构特征,头胸甲基叠层生物多孔炭展现出优异的电化学性能:在电流密度为0.5 A/g时,最高质量比电容高达380.2 F/g;当电流密度增加到10 A/g时,质量比电容仍有187.5 F/g,说明该电极具有较好的倍率性能.在10 A/g的充放电电流密度下循环5000次后,头胸甲基叠层生物多孔炭的容量保持率高达93.6%.优良的电容性能显示废弃的清江河虾头胸甲在超级电容器电极材料方面具有很好的应用前景.  相似文献   

3.
采用水热组装法制备了碳纳米管/氮掺杂多孔碳复合电极材料。通过扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)、拉曼光谱(Raman)、N2吸附-脱附(BET)和X射线光电子能谱(XPS)表征了复合材料的微观形貌和结构;并采用循环伏安法、恒流充放电和交流阻抗谱测试了复合材料的储能特性。结果表明,水热组装法成功地合成了具有高比表面积(1 039m~2/g)的碳纳米管/氮掺杂多孔碳复合材料。并且该复合材料表现出优异的储能特性,在1A/g下,其比电容高达261F/g,远远高于氮掺杂多孔碳(214F/g)和碳纳米管(109F/g)的比电容;在功率密度为10 500 W/kg下其能量密度仍为53.75 Wh/kg。  相似文献   

4.
采用蒙脱土为基的新型氮掺杂多孔碳(NMC),通过超声分散法制备NMC@MnO_2复合材料,再与苯胺(ANI)原位聚合得到NMC@MnO_2@PANI复合材料。采用红外光谱、拉曼光谱、X射线衍射和扫描电镜表征复合材料的组成和形貌。复合材料在1mol/L Na_2SO_4电解液中,电流密度0.25A/g时,质量比电容为228.5F/g;1A/g电流密度下,800次循环充放电后,比电容保持率为86%;在1mol/L H_2SO_4酸性电解液中,电流密度0.5A/g时,质量比电容为588.0F/g,在1A/g电流密度下,经过800次循环充放电后,比电容保持率76%。结果表明:NMC@MnO_2@PANI复合材料在中性和酸性电解液中能够表现出较好的电化学电容性能。  相似文献   

5.
以聚吡咯为碳源,通过一步碳化-活化法制备了氮/磷双掺杂分级孔结构的多孔碳。在6mol/L KOH和1mol/L Na2SO4电解液中研究了所制备多孔碳的电化学电容性能。研究表明,活化后的碳材料A-Z0比表面积高达1 433m~2/g,总孔体积为0.96cm~3/g,氮和磷元素的含量分别为1.78%和0.24%,证明A-Z0为氮/磷双掺杂的高比表面积的多孔碳。由于高的比表面积、分级孔道结构以及氮/磷官能团的协同作用,A-Z0材料表现出较为优异的电化学特性。在电流密度为0.5和30A/g时,其比电容分别达到209.3和176F/g,显示出高的比电容和倍率特性。此外,该材料也显示出优异的循环稳定性(4A/g下循环10 000圈后电容保持率为98%)。在中性电解液中,A-Z0组装成的对称两电极电容器呈现出高的能量密度(13.3 Wh/kg),表明该材料在超级电容器等领域具有潜在应用前景。  相似文献   

6.
以石油炼制副产品石油焦为原料,采用KOH活化法制备高比面积多孔炭,通过氨水水热处理对多孔炭进行表面渗氮改性。系统考察了KOH/石油焦比例(碱/炭比)对多孔炭孔结构及电化学性能的影响。结果表明多孔炭的比表面积、孔结构和电化学性能可以通过碱/炭比有效地调控。随着碱/炭比的增大,多孔炭的孔道逐渐增大,当碱炭比为3∶1时最大比表面积达到2 964 m~2·g~(-1)。当碱/炭比为5∶1时,多孔炭的比表面积和中孔率分别高达2 842 m~2·g~(-1)和67.0%,其在50 m A·g~(-1)电流密度下的比电容达到350 F·g~(-1)。氨水水热处理多孔炭,可以有效地在多孔炭表面引入氮原子,从而提高了多孔炭电极的电化学性能,尤其提高其在高电流密度下的比电容值。KOH活化以及氨水水热处理为制备高性能低成本石油焦基超级电容器电极材料提供了一种简单有效的方法。  相似文献   

7.
具有较高电化学性能的一种新型多孔碳化的聚苯胺包覆碳纳米管电极材料被成功的制备,它是先通过原位聚合形成聚苯胺包覆碳纳米管复合材料,然后在氩气条件下850℃碳化制得的。该电极材料在0.5A.g-1电流密度下和1mol/L H2SO4电解液中拥有209F.g-1的比电容,远高于相同条件下碳纳米管的比电容20F.g-1。这应该归因于该电极材料比表面积的提高和来自碳化聚苯胺层中氮原子掺杂诱导的赝电容效应,同时也说明了该材料在超级电容器应用中是一种比较有希望的电极材料。  相似文献   

8.
在酸性介质中,采用电化学循环伏安法合成了Ag+掺杂改性聚苯胺复合电极材料,利用红外光谱、X射线衍射和扫描电镜等检测手段对电极材料的结构和形貌进行了表征,研究了Ag+不同掺杂浓度对聚苯胺电容性能的影响,同时探讨了系列过渡金属离子与聚苯胺之间的作用机理及对容量的影响规律。结果表明,电流密度为3 m A/cm2时,浓度为0.12mol/L的Ag+改性聚苯胺电极材料的比电容达1000 F/g,循环1000次后,比电容的保持率为71%,相对于无Ag+掺杂的PANI(比电容和比电容的保持率分别为591 F/g和46%),其电化学性能有较大程度的改善。利用电子亲和势和离子半径的比值(Ea/r)可以说明不同过渡金属离子对聚苯胺比电容的改善程度。  相似文献   

9.
在酸性介质中,采用电化学循环伏安法合成了Ag+掺杂改性聚苯胺复合电极材料,利用红外光谱、X射线衍射和扫描电镜等检测手段对电极材料的结构和形貌进行了表征,研究了Ag+不同掺杂浓度对聚苯胺电容性能的影响,同时探讨了系列过渡金属离子与聚苯胺之间的作用机理及对容量的影响规律。结果表明,电流密度为3 m A/cm2时,浓度为0.12mol/L的Ag+改性聚苯胺电极材料的比电容达1000 F/g,循环1000次后,比电容的保持率为71%,相对于无Ag+掺杂的PANI(比电容和比电容的保持率分别为591 F/g和46%),其电化学性能有较大程度的改善。利用电子亲和势和离子半径的比值(Ea/r)可以说明不同过渡金属离子对聚苯胺比电容的改善程度。  相似文献   

10.
在酸性介质中,采用电化学循环伏安法合成了Ag+掺杂改性聚苯胺复合电极材料,利用红外光谱、X射线衍射和扫描电镜等检测手段对电极材料的结构和形貌进行了表征,研究了Ag+不同掺杂浓度对聚苯胺电容性能的影响,同时探讨了系列过渡金属离子与聚苯胺之间的作用机理及对容量的影响规律。结果表明,电流密度为3 m A/cm2时,浓度为0.12mol/L的Ag+改性聚苯胺电极材料的比电容达1000 F/g,循环1000次后,比电容的保持率为71%,相对于无Ag+掺杂的PANI(比电容和比电容的保持率分别为591 F/g和46%),其电化学性能有较大程度的改善。利用电子亲和势和离子半径的比值(Ea/r)可以说明不同过渡金属离子对聚苯胺比电容的改善程度。  相似文献   

11.
由于氮掺杂多孔碳材料不仅保留原有材料的高比表面积、高孔隙率和发达的孔道结构等优势,还兼具杂原子良好的润湿性能和导电性,被广泛应用于超级电容器电极材料的研究。以均苯四甲酸二酐(PMDA)和4,4′-二氨基二苯醚(ODA)为原料,通过水热法,在高温高压的条件下,分子链进行“自上而下”的折叠,形成三维纳米微球结构。借助对纳米球的高温热解,使氮元素保留在碳材料中,得到含有大量微孔和介孔结构的掺杂氮碳微球。当碳化温度达到800℃时,PI碳球具有709.39m2/g的高比表面积和良好的氮掺杂率,很大程度上提高了此类电极材料的比电容和润湿性能。电化学测试表明,当扫描速率为0.5A/g时,电极材料能够达到253.6F/g的比电容,且在电流密度达到10A/g时,电极材料的电容保持率为59.6%。同时,在循环10000次后,比电容保持率出现涨幅达到105%,具有优异的循环稳定性。综上,通过自组装和氮掺杂的有效结合,制备的3D氮掺杂多孔碳微球具有理想的电化学性能,为制备超级电容器电极材料提供了一种可供参考的工艺。  相似文献   

12.
以苯胺为单体、樟脑磺酸为掺杂剂,采用水热法制备了聚苯胺纳米纤维。利用红外光谱、X射线衍射、扫描电镜和透射电镜对聚苯胺进行了结构和形貌表征。在1 mol/L H2SO4电解液中,采用循环伏安、恒流充放电及交流阻抗等测试技术,对聚苯胺的电化学性质进行了研究。结果表明,成功合成了直径约为50 nm~80 nm的聚苯胺纤维;当电流密度从0.5 A/g(486 F/g)增大到2 A/g(363 F/g)时,聚苯胺的比电容仍达到363 F/g,比电容保持率为74%,并且表现了出较小的内阻。可见,制备的聚苯胺纳米纤维具有较高的比电容和良好的倍率特性,在电化学电容器中有潜在的应用价值。  相似文献   

13.
以樟脑磺酸为掺杂酸,采用低温化学氧化聚合法合成了纤维状聚苯胺。通过透射电镜、扫描电镜、红外光谱等探讨了单体苯胺与引发剂过硫酸铵的摩尔比对聚苯胺形貌和结构的影响。利用循环伏安、恒流充放电以及交流阻抗等技术对样品的电化学性能进行了测试。结果表明,苯胺与过硫酸铵摩尔比为2:1获得的聚苯胺在电流密度为0.5 A/g时的比电容最高,为762.4 F/g。甚至在高电流密度下(10 A/g)仍保持530.6 F/g的比电容。经1000圈的恒流充放电后,容量保持率为74.4%。相比之下,优化的聚苯胺具有最高的比电容和倍率特性,在超级电容器中有广泛的应用前景。  相似文献   

14.
以樟脑磺酸为掺杂酸,采用低温化学氧化聚合法合成了纤维状聚苯胺。通过透射电镜、扫描电镜、红外光谱等探讨了单体苯胺与引发剂过硫酸铵的摩尔比对聚苯胺形貌和结构的影响。利用循环伏安、恒流充放电以及交流阻抗等技术对样品的电化学性能进行了测试。结果表明,苯胺与过硫酸铵摩尔比为2:1获得的聚苯胺在电流密度为0.5 A/g时的比电容最高,为762.4 F/g。甚至在高电流密度下(10 A/g)仍保持530.6 F/g的比电容。经1000圈的恒流充放电后,容量保持率为74.4%。相比之下,优化的聚苯胺具有最高的比电容和倍率特性,在超级电容器中有广泛的应用前景。  相似文献   

15.
以褐煤萃取物为炭前驱体, MgO为阻隔剂, KOH为活化剂, 在800℃惰性气氛下制备出类石墨状多孔炭材料。对该多孔炭材料进行了红外(FTIR)、X射线衍射(XRD)、透射电镜(TEM)和拉曼(Raman)表征。以活化前和活化后多孔炭为电极材料, 利用循环伏安、恒电流充放电、交流阻抗对其进行了电化学电容性能评价和比较。结果表明: 活化后炭材料呈现多孔的薄膜状, 比表面积高达1396 m2/g, 而活化前炭材料比表面积仅为138.4 m2/g。当电流密度为1 A/g和4 A/g时, 活化后炭材料比电容分别为533 F/g和390 F/g; 而活化前炭材料对应的比电容为366 F/g和198 F/g。在电流密度为5 A/g下循环8000圈后, 活化前后炭材料的电容保持率分别为72.5%和89.6%。可见, 经过KOH活化后的炭材料比电容和电化学稳定性有了显著提高。该研究证明阻隔剂和活化剂的使用, 能够获得高度柔性的高电容性能的类石墨状多孔炭。  相似文献   

16.
通过真空抽滤诱导自组装及热解还原处理, 制备出具有柱撑结构的聚苯胺炭/石墨烯复合材料(PGR)。采用X射线衍射(XRD)、透射电子显微镜(TEM)、X射线电子能谱(XPS)和电化学测试等表征技术考察了聚苯胺单体(AN)与氧化石墨烯(GO)质量比对PGR结构和电化学性能的影响。结果表明, 聚苯胺炭均匀分布在石墨烯(GR)片层间形成三维导电网络, 有效地增大了GR的层间距, 且实现了氮掺杂, 显著提高了GR的结构稳定性和电化学性能; AN与GO质量比为1 : 1时制备的样品PGR1在100 mA/g电流密度下的首次脱锂比容量为653 mAh/g, 当电流密度增大至1 A/g时, 仍具有高达343 mAh/g的脱锂比容量, 远高于GR的脱锂比容量(101 mAh/g), 表现出优异的倍率性能。  相似文献   

17.
以菱角壳为前驱体,采用KOH化学活化法制备超级电容器用多孔炭,研究了不同碱炭比对多孔炭结构和电化学性能的影响。采用SEM、XRD、Raman、N_2吸脱附测试对多孔炭的微观结构进行表征,并利用循环伏安、恒流充放电、长循环、交流阻抗等方法考察其电容性能。结果表明,碱炭比为4时,多孔炭具有最高的比表面积(2 046.74 m~2/g)和最丰富的孔结构,以TEABF_4/PC为电解液组装成超级电容器,在0.1 A/g电流密度下,其比电容高达126.1 F/g,以0.5 A/g电流密度循环10 000次,其比电容仍保持92.6 F/g,展现出良好的电容性能。  相似文献   

18.
采用循环伏安法(CV)制备了聚苯胺(PANI)和掺杂镧离子的聚苯胺(PANI/La~(3+))薄膜电极。利用傅里叶红外光谱、X射线衍射、场发射扫描电镜和X射线能谱仪对其结构和形貌进行了分析。通过循环伏安、恒流充放电(CP)及交流阻抗(EIS)等测试其电化学性能。结果表明,在0.5mol/L H_2SO_4电解液中,当电流密度为5mA/cm~2时,掺杂镧离子的聚苯胺比电容相对聚苯胺薄膜电极提高了100F/g,且镧离子掺杂后的聚苯胺循环稳定性明显改善。  相似文献   

19.
针对碳电极材料存在比电容小、能量密度低的问题,采用异质成核合成路径制备了新型的碗状空心碳微球,进一步以尿素为氮源,通过水热法制备了高性能氮掺杂碗状空心碳微球。采用X射线衍射仪、场发射扫描电子显微镜、能谱仪、傅立叶红外光谱仪和X射线光电子能谱分析仪对碗状空心碳微球和氮掺杂碗状空心碳微球的形貌及结构进行表征,并分析了氮掺杂对碗状空心碳微球的电化学性能。实验结果表明:氮掺杂对碗状空心碳微球的电化学性能有显著的改善,在1 A/g的电流密度下,氮掺杂碗状空心碳微球的比电容(235.5 F/g)远高于碗状空心碳微球的比电容(121.0 F/g),此外,氮掺杂碗状空心碳微球在3 A/g的电流密度下循环5 000次后,其比电容保持率为78.3%。  相似文献   

20.
采用模板聚合同步活化法可控制备了氮/氧共掺杂的多孔碳纳米带(PCNR)材料。通过SEM,TEM,FTIR,Raman,XRD,BET和XPS对PCNR的形貌和结构进行了表征,结果表明:PCNR呈三维连通的带状结构,碳纳米带表面呈多孔状;800℃活化制备的PCNR800样品比表面积为2342 m~2/g、氮含量为10.75%,氧含量为13.90%。PCNR800为电极活性物质组装的超级电容器,其具有优异的储能特性。在电流密度为1.0 A/g时,比电容为58.8 F/g;在功率密度为1.5 kW/kg时,能量密度为73.3 Wh/kg;5000次恒流充放电循环后,比电容为初始比电容的96.5%,库仑效率保持99%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号