首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以半球面螺旋槽气体轴承为研究对象,建立供气切向角可变的轴承非线性动态润滑分析数学模型,采用偏导数法推导扰动压力控制方程,并在广义坐标系下进行保角变换和斜坐标变换,结合导数积分法与有限差分法,建立扰动压力控制方程的差分表达式,推导气体轴承动态刚度和阻尼系数与扰动压力之间的表达式,采用VC++6.0进行数值计算,在不同偏心率下研究供气压力及供气切向角对气膜动态特性系数的影响。结果表明:偏心率、供气压力增大,部分刚度、阻尼增加;供气切向角度增大,部分刚度、阻尼减小。  相似文献   

2.
以半球面螺旋槽气体轴承为研究对象,建立供气切向角可变的轴承非线性动态润滑分析数学模型,采用偏导数法推导扰动压力控制方程,并在广义坐标系下进行保角变换和斜坐标变换,结合导数积分法与有限差分法,建立扰动压力控制方程的差分表达式,推导气体轴承动态刚度和阻尼系数与扰动压力之间的表达式,采用VC++6.0进行数值计算,在不同偏心率下研究供气压力及供气切向角对气膜动态特性系数的影响。结果表明:偏心率、供气压力增大,部分刚度、阻尼增加;供气切向角度增大,部分刚度、阻尼减小。  相似文献   

3.
以半球螺旋槽动静压气体轴承为研究对象,建立球面动静压混合气体轴承的非线性动态润滑计算分析数学模型,采用偏导数法推导出扰动压力控制方程;在广义坐标系下,采用有限差分法对扰动压力控制方程离散化,推导出扰动压力的差分表达式;推导出半球螺旋槽动静压气体轴承刚度和阻尼系数与扰动压力之间的关系表达式;采用VC++6.0编制程序,数值计算出三维微气膜的瞬态扰动压力分布、非线性气膜力及动态刚度系数和动态阻尼系数。研究转速、偏心率及供气压力对气膜动态特性系数的影响规律,结果表明:随着转速、偏心率及供气压力的增大,气膜刚度和阻尼系数均有不同程度的变化。  相似文献   

4.
基于CFD建立球面螺旋槽动静压气体轴承气膜的有限元模型,数值计算气膜网格点上的压力分布,模拟气膜瞬态流场中复杂的气体流动,得到气膜的压力分布、承载力以及动态特性系数。结果表明:增加供气压力可以有效地增强静压效应,减小气膜厚度和增加转速有助于增强动压效应,动静压效应耦合可以提高轴承承载性能,偏心率为0.4~0.5,平均气膜厚度为8~12μm,供气压力为0.5~0.6 MPa时,产生的动静压耦合效应明显,从而可增加气膜的承载性能和轴承高速运行的稳定性;轴承刚度系数随着气膜厚度的增大呈先增加后减小的趋势,随着偏心率的增加而增加;轴承阻尼系数随着气膜厚度和偏心率的增加变化较为复杂,但整体上呈增大的趋势,因此,合理地选取气膜厚度和偏心率能够提高轴承承载性能,改善其动态特性,提高球面动静压气体轴承运行稳定性。  相似文献   

5.
建立了球面螺旋槽气体动静压轴承的微气膜有限元模型,应用CFD技术和流体动力学Fluent软件,研究了球面螺旋槽气体动静压轴承在稳态下的承载特性,得到了轴承在不同转速下的压力分布云图,进而揭示了在不同运行参数和结构参数下,轴承承载力及动静压耦合效应的变化规律。结果表明,选择合适的结构参数和运行参数,如槽宽比、槽深比、螺旋角、槽数、转速等,有助于提高轴承的承载性能。  相似文献   

6.
建立半球螺旋槽气体动静压轴承润滑分析数学模型;通过建立广义坐标系并进行保角变换简化数学模型,利用广义斜坐标变换划分求解域球面网格,提高数值计算精度;采用有限差分法对控制方程离散,建立控制方程的差分表达式,并采用VC++6.0编程计算三维微气膜稳态气膜厚度和压力分布;通过对微气膜周向和径向压力积分,求得轴承稳态的承载能力;研究动压和静压的耦合效应,分析螺旋槽结构参数、节流孔的数量对轴承承载力的影响规律。结果表明:随着小孔个数的增加,静压效应显著增加,轴承的承载力明显增加;随着螺旋角、槽深比、槽宽比的增大,轴承的承载力均先增大后减小,表明通过轴承优化设计参数可改善气体的润滑特性,提高承载力。  相似文献   

7.
针对高速动静压气体轴承气膜的复杂非线性动力学行为,以球面螺旋槽动静压气体轴承为研究对象,建立润滑分析数学模型;采用有限差分法与导数积分法进行求解,得到动态扰动压力分布及动态特性系数,并研究切向供气条件下螺旋槽参数、径向偏心率、供气压力、转速对气膜刚度阻尼系数的影响规律;建立线性稳定性计算模型,预测气膜涡动失稳转速,分析运行参数对失稳转速的影响。结果表明:气膜阻尼是一种抑制涡动的因素,气膜的稳定性取决于气膜刚度与阻尼的协同作用;气膜刚度阻尼随着槽宽比、槽深比、螺旋角的增大,整体上呈先增大后减小的趋势;刚度随转速的升高而增大,阻尼则随转速的升高而减小;径向偏心率和供气压力越大,气膜刚度和阻尼越大;在一定范围内,提高供气压力、增大径向偏心率能够提高系统失稳转速;合理地选取轴承结构参数和运行参数,能够优化轴承动态特性,保证气体轴承较高的运行稳定性。  相似文献   

8.
超精密机床主轴一般采用静压气体轴承支承。文章应用大型商业计算流体软件Fluent,并结合MATLAB神经网络拟合工具箱,训练拟合出不同参数与轴承承载力及入流质量流量的映射关系函数,基于此,研究了不同参数对单节流孔圆形静压气体止推轴承静态特性影响的规律。首先,将计算的压力分布与文献中的实验数据进行对比,来验证计算模型与边界的正确性;然后,采用MATLAB神经网络拟合工具箱,训练拟合出轴承半径、节流孔孔径、气膜厚度和外界供气压力与轴承承载力及入流质量流量的映射关系函数;最后,研究了静压气体止推轴承外部供气结构对轴承压力分布的影响;气膜厚度、节流孔直径和供气压力对轴承承载力及入流质量流量的影响。结果表明:外部供气结构对轴承压力没有明显的影响;气膜厚度减少、孔径和外界供气压力的增大会增大轴承的承载力;气膜厚度、孔径和外界供气压力的增大都会增大入流质量流量。  相似文献   

9.
传统固有孔节流静压气体止推轴承研究的理论基础均建立在节流孔直径远大于气膜间隙的前提下,为了探究与气膜间隙同一数量级的微孔节流器静压气体止推轴承的静态性能,建立微孔节流静压气体止推轴承模型,通过CFD软件进行三维仿真,分析不同气膜间隙、孔径、供气压力对轴承静态特性的影响,并与环面节流器静压气体止推轴承进行对比。结果表明:无论是微孔节流器还是环面节流器,在节流孔出口处均有压降出现,但微孔节流器相对于环面节流器在节流孔出口边缘处速度和压力变化较为平缓;随着气膜间隙的增大轴承承载力减小,随着微孔节流器孔径减小轴承刚度增大,相同孔径下供气压力越大轴承承载力和刚度越大。  相似文献   

10.
含均压槽静压止推气体轴承的气膜特性   总被引:1,自引:0,他引:1  
采用ICEM建立含均压槽的静压止推气体轴承的气膜二维计算模型,分析不同供气压力和气膜厚度下的气膜压力、速度分布,并计算不同供气压力和气膜厚度下的承载力和气体质量流量。结果表明:随着供气压力和气膜厚度的增大,均压槽内的气旋现象越来越明显;随着供气压力的减小和气膜厚度的增大,气膜压力趋近于线性分布;轴承的承载力随着供气压力的增大而增大,气体流量随着供气压力和气膜厚度的增大而增大。均压槽是影响气膜压力和速度分布的关键因素,而均压槽内的气旋现象是影响均压槽内部流场的主要原因之一,而随着气膜厚度的增大均压槽的这种影响会而逐渐减小。  相似文献   

11.
王迎  王秋晓  陈安科  刘娜 《机械》2012,39(1):31-34,55
以环形节流孔径向静压气体轴承为研究对象,介绍了静压气体轴承的结构形式和工作原理,对气体润滑理论基础Reynolds方程进行了分析,利用计算流体动力学软件FLUENT对气体轴承的流场进行仿真分析,求解出了轴承气膜的压力分布.在轴承几何参数不变的情况下,分析了承载力与空气质量流量随不同供气压力和偏心率变化关系,并研究了静压气体轴承在高速工作下,动压效应对承载力的影响.  相似文献   

12.
非均匀供气可以实现静压气体轴承的刚度调节,增强轴承的承载能力。为了探究非均匀供气条件对静压气体轴承内压力分布和静态特性的影响,以双排供气径向气体轴承为研究对象,采用数值计算对不同供气方式(变压供气孔位置、区域范围)和供气压力下轴承的静态特性进行了研究。数值计算结果表明:变压供气孔的位置对轴承的静特性有较大影响;当在主要承载区内增大供气压力时,可显著增强轴承的动静压效应;增加压力可变的区域范围有助于提升轴承承载力,但耗气量也相应有所增加;增加承载侧供气压力和减小非承载侧供气压力都可以有效提升轴承承载力,后者还可以减小气体总流量;承载侧与非承载侧的供气压差越大,越有利于轴承承载力的提升。  相似文献   

13.
采用CATIA软件建立圆锥气体轴承气膜三维流场模型,对其进行结构体网格划分后导入Fluent软件进行流体力学模拟,得到三维流场的压力及气体流量分布;计算圆锥气体轴承的承载力大小,分析供气压力、气膜厚度、供气孔位置和供气孔直径对轴承性能的影响。研究结果表明:供气孔附近的压力及气体流速最大;供气压力及供气孔直径越大,轴承的承载力及气体流量越大;减小气膜厚度能有效提升轴承承载力且能节省气体消耗量;供气孔位置在一定范围内外移对轴承承载力影响不大,但在接近边缘时会明显降低轴承承载力,同时,供气孔位置的外移还会引起气体消耗量的增加。  相似文献   

14.
刘通  董志强 《润滑与密封》2023,48(5):103-109
基于 Fluent软件对单气腔和三气腔结构空气静压轴承性能进行仿真分析。借助CATIA三维软件建立静压空气轴承三维模型,利用有限体积法求解等温条件下的稳态气体润滑 Reynolds方程,分析偏心率、长径比、气膜厚度、主轴转速对轴承承载性能、空气流量的影响。结果表明:偏心率较小及低供气压力下,三气腔结构的承载力优于单气腔结构;随着供气压力的增加,三气腔结构与单气腔结构的承载力差值逐渐增大,三气腔结构的承载力优于单气腔结构;随着主轴转速的增加,三气腔结构的气膜压力分布比单气腔结构更加均匀、动压效应更明显,主轴运转时稳定性能更好,承载力更高。  相似文献   

15.
为优化动静压气体止推轴承的承载特性,设计一种具有螺旋槽和狭缝节流器结构的动静压气体止推轴承,采用Fluent对轴承静态特性进行仿真分析,通过改变主轴转速、供气压力,研究气膜厚度、螺旋槽宽度、狭缝厚度等参数对轴承静态特性的影响。结果表明:相对狭缝节流止推轴承,增加螺旋槽结构可以提升轴承的动压效应增强,从而提升轴承的承载力和刚度;相同条件下,气膜厚度越大,轴承的承载力和刚度越小;主轴转速和供气压力增加,承载力和刚度均提升明显;螺旋槽宽度增加,轴承的承载力和刚度先增大后减小;狭缝厚度增大,轴承的承载力先增大后不变,刚度先增加后减小;狭缝深度提升,轴承的承载力减小,刚度先增大后减小。  相似文献   

16.
以小孔节流深浅腔动静压气体轴承为研究对象,采用Fluent软件对轴承的承载特性进行分析,研究偏心率、供气压力、主轴转速、气膜厚度、浅腔深度比等因素对轴承承载力和刚度的影响。结果表明:小孔节流深浅腔动静压气体轴承浅腔区的平均压力大于深腔区的平均压力,压力最大区域出现在浅腔末端靠近轴承端面处;随着供气压力的增加,承载力逐渐增大,但供气压力不应超过0.95 MPa;当主轴转速在3×10~5 r/min以内时,承载力和刚度随着转速的增加呈线性增长规律,当主轴转速超过3×10~5 r/min继续增加时,承载力和刚度的增长趋势明显放缓;承载力与刚度随着浅腔深度比的增加先增大后减小,当浅腔深度是气膜厚度的1~1.5倍时,承载力与刚度接近最大值。  相似文献   

17.
李树森 《润滑与密封》2018,43(7):102-106
针对精密机床主轴结构采用前后2个静压气体径向轴承时存在的安装精度难以保证,且不能自动调心的问题,设计一种新型气浮主轴结构,该气浮主轴前端支撑采用静压气体半球轴承,后端支撑采用静压气体径向轴承。基于最大承载和刚度原则对静压气体径向和半球轴承进行结构设计与优化;利用Fluent软件对径向轴承与半球轴承分别进行气膜流场特性分析,得到径向轴承和半球轴承在不同偏心率以及不同转速情况下的承载特性。结果表明:径向轴承与球轴承的承载力均随着偏心率以及供气压力的增大而逐渐增大,刚度随着供气压力的增大而增大,随着偏心率的增大逐渐减小。设计的主轴在供气压力为0.5 MPa、偏心率为0.5时,承载力和静刚度均可以满足精密加工的要求。  相似文献   

18.
透平膨胀机应用的小孔节流式静压气体轴承的本质是动静压混合气体轴承,这里将动静压混合气体轴承作为研究对象,从动压轴承和静压轴承角度分别研究其工作原理和静态特性。混合气体轴承中气膜压力分布是求解轴承静态特性的关键,采用有限差分法(FDM)对含有气膜压力的Reynolds方程通过MTLAB编写的程序进行求解,分析混合轴承的工作原理并计算其静态特性。对比分析偏心率、转速、长径比和供气压力等因素对动压轴承和静压轴承静态特性的影响。结果表明:增大偏心率、提高转速、增大供气压力,采用轴承大长径比均可以提高动静压混合气体轴承的承载力;增大偏心率和提高转速,可增大气膜刚度,降低转子姿态角,提高转子稳定性。  相似文献   

19.
研究偏心率及不同供气压强条件下,气体静压径向轴承节流孔附近的气膜流场特性及承载力变化情况,并通过优化节流孔张角,提高轴承承载力。建立气体静压径向轴承三维模型,划分网格并确立模型的边界条件,采用Fluent软件对轴承内部气膜流场进行仿真计算。计算结果表明,气体静压径向轴承偏心率的增加,会导致区域气膜的压力差增大,从而提高轴承的承载力。轴承承载力同样会随着供气压强的增大而增大,但增幅会随着供气压强的增大而逐渐变小。但当供气压强增加到临界值时,由于节流孔附近激波的出现,将导致承载力随着供气压强的进一步增大而降低。通过改变轴承节流孔张角,可消除轴承气膜内的涡流现象,并改善气膜流场特性,降低能量损失,提高轴承承载力。经过分析对比,发现最优节流孔张角介于50°到60°之间。  相似文献   

20.
为提高大型重载静压气体止推轴承承载力和刚度,应用FLUENT15. 0对直径150 mm的双排孔节流静压气体止推轴承进行模拟,分析供气压力和轴承间隙对止推轴承压力分布以及刚度和承载力的影响,对比分析轴承间隙内的压力变化和流动情况,并通过与文献实验值进行对比,验证了该方法的准确性。结果表明:随着供气压力的增大,轴承上相同位置处的气膜压力增大,刚度和承载力呈线性增加;随着轴承间隙的增加,气体流速出现了从亚音速向超音速的跨越,轴承间隙内气膜压力骤减,轴承的刚度先增大后减小,承载力一直减小,因此,应合理选择轴承间隙,以维持较高的承载力和轴承刚度,且同时避免超音速区域的出现。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号