首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
With the aim of better understanding geochemistry of coal, 71 Late Permian whole-seam coal channel samples from western Guizhou Province, Southwest China were studied and 57 elements in them were determined. The contents of Al, Ca, Co, Cr, Cu, Fe, Ga, Hf, K, Li, Mn, Mo, Nb, Ni, Sn, Ta, Ti, Th, U, V, Zr, and REEs in the Late Permian coals from western Guizhou Province are higher than the arithmetic means for the corresponding elements in the US coals, whereas As, Ba, Br, F, Hg, P, Se, and Tl are lower. Compared to common Chinese coals, the contents of Co, Cr, Cu, Ga, Hf, Li, Mn, Mo, Ni, Sc, Sn, Ti, U, V, Zn, and Zr in western Guizhou coals are higher, and As, F, Hg, Rb, Sb, Tl, and W are lower. Five groups of elements may be classified according to their mode of occurrence in coal: The first two, Group A, Tm–Yb–Lu–Y–Er–Ho–Dy–Tb–Ce–La–Nd–Pr–Gd–Sm, and Group B, As–Sr–K–Rb–Ba–F–Ash–Si–Sn–Ga–Hf–Al–Ta–Zr–Be–Th–Na, have high positive correlation coefficients with ash yield and they show mainly inorganic affinity. Some elements from Group B, such as Ba, Be, Ga, Hf, and Th, are also characterized by significant aluminosilicate affinity. In addition, arsenic also exhibits high sulfide affinity (rS–Fe>0.5). The elements, which have negative or lower positive correlation coefficients with ash yield (with exceptions of Bi, Cs, Nb, Mn, Se, and Ti), are grouped in other four associations: Group C, Cr–V–Mo–U–Cd–Tl; Group D, Hg–Li–Sc–Ti–Eu–Nb–Cs–W; Group E, Bi–Sb; and Group F, Co–Ni–Cu–Pb–Zn–Mg–Se–Ca–Mn–S–Fe. The correlation coefficients of some elements, including Co, Cr, Cu, Fe, Hg, Li, Mo, Ni, P, S, Sc, U, V, and Zn, with ash yield are below the statistically significant value. Only Cr and Cu are negatively correlated to ash yield (−0.07 and −0.01, respectively), showing intermediate (organic and inorganic) affinity. Manganese and Fe are characterized by carbonate affinity probably due to high content of epigenetic veined ankerite in some coals. Phosphorus has low correlation coefficients with any other elements and is not included in these six associations. There are five possible genetic types of enrichment of elements in coal from western Guizhou Province: source rock, volcanic ash, low-temperature hydrothermal fluid, groundwater, and magmatic hydrothermal inputs.  相似文献   

2.
The elemental composition of high temperature ash (750°C) and forms of S were studied in 25 coal seams from the Escucha Formation (Middle Albian) in the Teruel Mining District, northeast Spain. The principal analytical method was ICP-MS, but ICP-ES was also used in the determination of some trace elements. The analytical data show wide ranges of trace element cotnents among the coal seams studied, even in the vertical profile of a single coal seam. These wide ranges of the trace element concentrations are attributed to both syngenetic and epigenetic processes.When a comparison was made between the average trace element contents of the Teruel Mining District coals, and those of the average content in worldwide coals, the Teruel coals show slightly higher concentrations of Be and U, and lower concentrations of Ba, Cd, Mn, Pb, Sr and Zr. Further, three main groups of trace elements were differentiated on the basis of the inorganic/organic association: (1) trace elements with inorganic affinity; Ba, Ce, Co, Cr, La, Mn, Ni, Rb and Zr. Between these, Ba, Ce, Cr and Rb show a well defined correlation with the clay mineral content, and Co and Ni with pyritic-S content; (2) trace elements with an intermediate (mixed) affinity; As, Cd, Cu, Dy, Er, Eu, Gd, Ge, Ho, Lu, Mo, Nd, Pb, Pr, Sb, Sm, Sr, Tb, Th, Tm, U, Yb and Zn. In this group, As, Cd, Cu, Ge, Mo, Th, U and Zn show a weak trend associated with the mineral matter and Sr with the organic matter; and (3) Be shows an organic affinity. The high mineral matter content (21.3% HTA) of the Teruel coals may account for the great number of elements with inorganic affinity. This classification represents a general trend, but the results show that the affinities of some trace elements (e.g. As, Sb and Zn) may vary from one coal seam to another in the Teruel Mining District.  相似文献   

3.
山西平朔安太堡露天矿9号煤层中的微量元素   总被引:12,自引:0,他引:12       下载免费PDF全文
庄新国  曾荣树 《地球科学》1998,23(6):583-588
使用ICP-AES方法对安太堡露天矿9号煤层中的微量元素进行了系统测定,检测出53种微量元素,将研究煤样的平均微量元素质量分数与世界范围微量元素平均质量分数相比较,煤样中Li,Ga,Sr,Zr,Nb,Sn和Ta具有较高的富集,而Cr,Co,Ni,Ge,Rb,Y,Cs和Ba具有较低的富集,研究资料表明不同微量元素在垂向剖面上其质量分数具有不同的分布特征。经相关分析表明:(1)与镜质组含量相关的元素有  相似文献   

4.
This study presents the concentrations and modes of occurrence of trace elements in 81 coal samples from the Çan basin of northwestern Turkey. The concentration of trace elements in coal were determined by inductively coupled plasma-mass spectrometry and inductively coupled plasma-atomic emission spectrometry. Additionally, traditional coal parameters were studied by proximate, ultimate, X-ray diffraction, and petrographic analyses. Twenty trace elements, including As, B, Ba, Be, Cd, Cu, Co, F, Hg, Mo, Ni, Pb, Sb, Se Sn, Th, Tl, U, V, and Zn, receive much attention due to their related environmental and human health concerns. The Çan coals investigated in this study are lignite to sub-bituminous coal, with a broad range of ash yields and sulphur contents. The trace element concentrations show variety within the coal seams in the basin, and the affinities vary among locations. The concentrations of B, Ba, Be, Cd, Cu, Co, F, Hg, Mo, Ni, Pb, Sb, Se, Sn, Tl, and Zn in Çan coals are within the Swaine's worldwide concentration range, with the exception of As, Th, U, and V. On the other hand, compared with world coals, the Çan basin coals have higher contents of As, B, Cu, Co, Mo, Pb, Th, U, V, and Zn. Based on statistical analyses, most of the trace elements, except for U, show an affinity to ash yield. Elements including As, Cd, Hg, Se, Cu, Mo, Ni, and Zn, show a possible association with pyrite; however, the elements Se, B, and Mo can be have both organic and inorganic associations.  相似文献   

5.
The geochemistry of trace elements in the underground and open-pit mine of the Goze Delchev subbituminous coal deposit have been studied. The coals in both mines are highly enriched in W, Ge and Be, and at less extent in As, Mn and Y as compared with the world-wide Clarkes for subbituminous coals. Ni and Ti are also enhanced in the underground coals, and Zr, Cr and Mo in the open-pit mine coals.Characteristic for the trace element contents in the deposit is a regular variation with depth. The following patterns were distinguished for profile I: a — the element content decreases from the bottom to the top of the bed paralleling ash distribution (Fe, Co, As, Sb, V, Y, Mo, Cs, REE, Hf, Ta, Th, P and Au); b — Ge and W are enriched in the near-bottom and near-top coals; c — in the middle part of the bed the content of K and Rb is maximal, while that of U is slightly enriched; d — Ba content decreases from the top to the bottom of the bed. In profile II, W and Be contents decrease from the bottom to the top. The near-bottom, and especially the near-roof samples of profile IV are highly enriched in Ge, while for W the highest is the content of the near-bottom sample.Ge, Be, As, Mn, Cl and Br are mainly organically associated. The organic affiliation is still strong for Co, B, Sr, Ba, Sb, U, Th, Mo, La, Ce, Sm, Tb and Yb in the underground coals, and Fe, Co, Na, W, Sr, Y and Ag in the coals from the open-pit mine. K, Rb, Ti, Zr, Hf and Ta are of dominant inorganic affinity. The chalcophile and siderophile elements correlate positively with Fe and each other and may be bound partly with pyrite or other sulphides and iron containing minerals.Compared statistically by the t-criteria, the elements Na, Li, Cu, Zn, Pb, Cr, Ni, Co, Mo, Fe and Be are of higher content in the open-pit mine. Tungsten is the only element of higher concentration in the underground mine. The contents of Ge, As, Sr, V, Mn, Y, Zr and P are not statistically different in both mines.It was supposed that there were multiple sources of the trace elements in the deposit. The source of the highly enriched elements (W, Ge, Be, and As) most probably were the thermal waters in the source area. The contemporary mineral springs are of high content of these elements. Another source were the hosting Mesta volcanic rocks, which are enriched in Sb, Mo, Hf, U, Th, As, Li and Rb. Some of the volcanics were hydrothermally altered and enriched or depleted of many elements. Thus, the hydrothermal solutions were also suppliers of elements for the coals. It is obvious that the contents, distribution and paragenesis, of the trace elements in both Goze Delchev coals reflect the geochemical specialization of the source area, including rocks, paleo- and contemporary thermal waters.  相似文献   

6.
The occurrence and distribution of major and trace elements have been investigated in two coal-bearing units in the Chonqing mining district (South China): the Late Permian and Late Triassic coals.The Late Permian coals have higher S contents than the Late Triassic coals due to the fixation of pyrite in marine-influenced coal-forming environments. The occurrence of pyrite accounts for the association of a large number of elements (Fe, S, As, Cd, Co, Cu, Mn, Mo, Ni, Pb, Sb, Se, and Zn) with sulphides, as deduced from the analysis of the density fractions. The marine influence is probably also responsible for the organic association of B. The REEs, Zr, Nb, and Hf, are enriched by a factor of 2–3 with respect to the highest levels fixed for the usual worldwide concentration ranges in coal for these elements. The content of these elements in the Late Permian coal is higher by a factor of 5–10 with respect to the Late Triassic coal. Furthermore, other elements, such as Cu, P, Th, U, V, and Y, are relatively enriched with respect to the common range values, with maximum values higher than the usual range or close to the maximum levels in coal. The content of these elements in the Late Permian coal is higher than the Late Triassic coal. These geochemical enrichments are the consequence of the occurrence, in relatively high levels, of phosphate minerals, such as apatite, xenotime, and monazite, as deduced from the study of the density fractions obtained from the bulk coal.The Late Triassic coal has a low sulphur content with a major organic affinity. The trace element contents are low when compared with worldwide ranges for coal. In this coal, the trace element distribution is governed by clay minerals, carbonate minerals, and to a lesser extent, by organic matter and sulphide minerals.Major differences found between late Permian and Triassic coals are probably related to the source rocks, given that the main source rock of the late Permian epicontinental marine basin is the Emeishan basalt formation, characterised by a high phosphate content.  相似文献   

7.
Composition and quality of coals in the Huaibei Coalfield, Anhui, China   总被引:3,自引:0,他引:3  
The Huaibei Coalfield, Anhui Province, China, is one of the largest coalfields in China. The coals of Permian age are used mainly for power generation. Coal compositions and 47 trace elements of the No. 10 Coal of the Shanxi Formation, the No. 7, 5, and 4 Coals of the Lower Shihezi Formation, and the No. 3 Coal of the Upper Shihezi Formation from the Huaibei Coalfield were studied. The results indicate that the Huaibei coals have low ash, moisture, and sulfur contents, but high volatile matter and calorific value. The ash yield increases stratigraphically upwards, but the volatile matter and total sulfur contents show a slight decrease from the lower to upper seams. Magmatic intrusion into the No. 5 Coal resulted in high ash, volatile matter, and calorific value, but low moisture value in the coal. Among the studied 47 trace elements, Ba, Co, Cr, Cu, Hg, Mo, Ni, Pb, Sb, Th, U, V, and Zn are of environmental concerns. Four elements Hg, Mo, Zn, and Sb are clearly enriched in the coals as compared with the upper continental crust.  相似文献   

8.
The ash yield and concentrations of twenty-four minor and trace elements, including twelve potentially hazardous trace elements were determined in Mukah coal from Sarawak, Malaysia. Comparisons made to the Clarke values show that Mukah coal is depleted in Ag, Ba, Be, Cd, Co, Mn, Ni, Se, U, and V. On the other hand, it is enriched in As, Cr, Cu, Pb, Sb, Th, and Zn. Among the trace elements studied, V and Ba are associated predominantly with the clay minerals. Manganese, Cr, Cu, Th, and Ni are mostly bound within the aluminosilicate, sulphide and/or carbonate minerals in varying proportions, though a portion of these elements are also organically bound. Arsenic, Pb and Sb are mostly organically bound, though some of these elements are also associated with the sulphide minerals. Zinc is associated with both the organic and inorganic contents of the coal. Among the potentially hazardous trace elements, Be, Cd, Co, Mn, Ni, Se, and U may be of little or no health and environmental concerns, whereas As, Cr, Pb, Sb and Th require further examination for their potential health and environmental concerns. Of particular concern are the elements As, Pb and Sb, which are mostly organically bound and hence cannot be removed by physical cleaning technologies. They escape during coal combustion, either released as vapours to the atmosphere or are adsorbed onto the fine fly ash particles.  相似文献   

9.
Permian coals of the southern hemisphere are generally considered to contain lower concentrations of sulfides, halogens, and trace elements when compared to northern hemisphere Carboniferous coals. Few studies have considered the trace element content in South African coals, and little or no work has been published for Highveld coals. Of the nineteen coal fields in South Africa, the Highveld coal field is one of the nine currently producing, and is second largest in terms of production. Five run of mine samples and a high ash middlings product from the Number 4 Lower seam were analyzed, totaling six sample sets. Fourteen trace elements (As, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Sb, Se, V, and Zn) were selected for this study based on the global perception that these elements may be hazardous to human health and/or the environment when they are released during coal utilization. Several sample preparation techniques were tested using certified reference materials (SARMs 18, 19 and 20) to determine the most repeatable technique for these coals. The samples were analyzed by ICP-AES and CVAA (Hg only). Microwave digestion proved to be generally unreliable despite the utilization of several different methods. A slurry direct injection method into the ICP-AES provided good correlations with the reference material, but requires further development to enhance the confidence level in this relatively unexplored technique. Samples prepared based on three ASTM standards for the determination of trace elements in coal provided repeatable results in most instances, and were the preparation methods utilized for the Highveld coals.The trace element values determined for the Highveld coals are generally in good agreement with values available in literature for South African coals, with the exception of Hg, Mn and Cr. Hg values reported here are lower, Cr and Mn higher. Results generally agree well with analyses on the same samples conducted by the United States Geological Survey. When considering the global ranges for trace elements, the Highveld range values are within Swaine's range boundaries with the exception of Cr. Compared to the cited global average values for the fourteen trace elements determined, the values obtained for the Highveld coals generally fall below or well below these average values, with the exception of Cr and Mn. Concentrations of Cd and Cu are lower compared to global average values, and As, Mo, Pb, Se, Sb, and Zn can be considered low to very low. Arsenic is ten times lower compared to typical USA values. Concentrations of Co and Ni are similar to global averages, with V and Hg being very slightly higher. The middlings samples reported higher concentrations of most elements, related to the higher ash content of these samples. Of interest, the chalcophile elements determined are all depleted in the Highveld coals compared to global averages, and the siderophile elements are enriched or comparable to global averages.Risk-based health studies in the USA on coals with similar or higher Hg and significantly higher As contents have not reported negative health effects, and therefore it could be assumed that the mobilization of these trace elements from the five Highveld coals are unlikely to cause human health problems. Work is ongoing to determine the modes of occurrence of these HAPs and to address the partitioning behaviors and speciation states of these elements during coal utilization.  相似文献   

10.
涡阳花沟西10号煤中微量元素的有机亲和性   总被引:1,自引:0,他引:1  
为研究淮北矿区涡阳花沟西勘查区10号煤中微量元素的有机亲和性,共采集10个勘探钻孔煤样品,采用电感耦合等离子质谱仪ICP-MS分析了12种微量元素的含量;应用LECO碳硫分析仪测定了煤的总有机碳TOC,并通过两者的相关关系分析了元素的有机亲和性,结合元素的地球化学特征和煤样XRD物相鉴定结果,通过聚类分析进一步推断元素的赋存状态。结果表明:V、Cr、Co、Ni、Mo、Cd、Sb、Pb和Zn元素含量低于全国均值,没有异常富集,Be、Cu和Tl略高于全国均值;Cd具有较强的有机亲和性,Co、Zn、Be和Cr的有机亲和性较弱,V、Ni、Cu、Mo、Sb、Pb和Tl不具有机亲和性;V、Sb、Cu、Cr、Pb、Co和Ni主要以铝硅酸盐吸附态赋存,Cd主要以有机结合态赋存。   相似文献   

11.
The aim of the present study is the petrographic and chemical characterization of the coal at the Figueira Power Plant, Paraná, Brazil, prior and after the beneficiation process and the chemical characterization of fly and bottom ashes generated in the combustion process.Petrographic characterization was carried out through maceral analysis and vitrinite reflectance measurements. Chemical characterization included proximate analysis, determination of calorific value and sulphur content, ultimate analysis, X-ray diffraction, X-ray fluorescence, Inductively Coupled Plasma — Mass Spectrometry (ICP-MS) and Inductively Coupled Plasma — Atomic Emission Spectrometry (ICP-AES) analysis, and determination of Total Organic Carbon (TOC) content.Vitrinite reflectance analyses indicate a high volatile B/C bituminous coal (0.61 to 0.73% Rrandom). Maceral analyses show predominance of the vitrinite maceral group (51.6 to 70.9 vol.%, m.m.f). Except of the Run of mine (ROM) coal sample, the average calorific value of the coals is 5205 kcal/kg and ash yields range from 21.4 to 38.1 wt.%. The mineralogical composition (X-ray diffraction) of coals includes kaolinite, quartz, plagioclase and pyrite, whereas fly and bottom ashes are composed by mullite, ettringite, quartz, magnetite, and hematite. Analyses of major elements from coal, fly and bottom ashes indicate a high SiO2, Al2O3, and Fe2O3 content. Trace elements analysis of in-situ and ROM coals by ICP-MS and ICP-AES show highest concentration in Zn and As. Most of the toxic elements such as As, Cd, Cr, Mo, Ni, Pb, and Zn are significantly reduced by coal beneficiation. Considering the spatial distribution of trace elements in the beneficiated coal samples, which were collected over a period of three months, there appears to be little variation in Cd and Zn concentrations, whereas trace elements such as As, Mo, and Pb show a larger variation.In the fly and bottom ashes, the highest concentrations of trace elements were determined for Zn and As. When compared with trace element concentrations in the feed coal, fly ashes show a significant enrichment in most trace elements (As, B, Be, Cd, Co, Cr, Cu, Li, Mn, Mo, Ni, Pb, Sb, Tl, and Zn), suggesting a predominantly volatile nature for these elements. In contrast, Sn is distributed evenly within the different ash types, whereas U shows depleted concentration in both bottom and fly ash samples.According to the International Classification of in-seam coals the Cambuí coals are of para/ortho bituminous rank of low grade (except for the ROM sample), and are characterized by the predominance of vitrinite macerals.  相似文献   

12.
This paper discusses the result of the detailed investigations carried out on the coal characteristics, including coal petrography and its geochemistry of the Pabedana region. A total of 16 samples were collected from four coal seams d2, d4, d5, and d6 of the Pabedana underground mine which is located in the central part of the Central-East Iranian Microcontinent. These samples were reduced to four samples through composite sampling of each seam and were analyzed for their petrographic, mineralogical, and geochemical compositions. Proximate analysis data of the Pabedana coals indicate no major variations in the moisture, ash, volatile matter, and fixed carbon contents in the coals of different seams. Based on sulfur content, the Pabedana coals may be classified as low-sulfur coals. The low-sulfur contents in the Pabedana coal and relatively low proportion of pyritic sulfur suggest a possible fresh water environment during the deposition of the peat of the Pabedana coal. X-ray diffraction and petrographic analyses indicate the presence of pyrite in coal samples. The Pabedana coals have been classified as a high volatile, bituminous coal in accordance with the vitrinite reflectance values (58.75–74.32 %) and other rank parameters (carbon, calorific value, and volatile matter content). The maceral analysis and reflectance study suggest that the coals in all the four seams are of good quality with low maceral matter association. Mineralogical investigations indicate that the inorganic fraction in the Pabedana coal samples is dominated by carbonates; thus, constituting the major inorganic fraction of the coal samples. Illite, kaolinite, muscovite, quartz, feldspar, apatite, and hematite occur as minor or trace phases. The variation in major elements content is relatively narrow between different coal seams. Elements Sc,, Zr, Ga, Ge, La, As, W, Ce, Sb, Nb, Th, Pb, Se, Tl, Bi, Hg, Re, Li, Zn, Mo, and Ba show varying negative correlation with ash yield. These elements possibly have an organic affinity and may be present as primary biological concentrations either with tissues in living condition and/or through sorption and formation of organometallic compounds.  相似文献   

13.
晋北-宁北煤中痕量元素的地球化学特征   总被引:2,自引:1,他引:2  
应用仪器中子活化 (INAA)、电感耦合等离子体原子发射光谱 (ICP- AES)和原子吸收光谱 (AAS)等方法测定了晋北-宁北一线 5对矿井、 2个露天矿、 5个电厂和 3个洗煤厂煤中环境敏感性痕量元素的含量;通过与中国土壤、其他地区煤以及世界范围煤中痕量元素含量进行对比,总结了研究区痕量元素的分布、富集特征,得知部分地区煤中 Hg、 Cd和 Se的含量较高,在燃烧利用过程中可能对环境造成影响.通过分析痕量元素与灰分、挥发分的相关性以及痕量元素间、痕量元素与 Al、 Fe和 Sp的相关、聚类特性,探讨了痕量元素间及其与矿物质间的亲合性及赋存特征.  相似文献   

14.
以河北开滦矿区晚古生代煤及其洗选产品为例,运用电感耦合等离子体质谱 (ICP-MS)和冷原子吸收光谱 (CV-AAS)方法对煤中主要微量有害元素 (包括 Be、 Cr、 Co、 Ni、 Cu、 Zn、 Ga、 As、 Se、 Mo、 Tl、 Pb、 Th、 U和 Hg)的含量及其在洗选过程中的迁移和分配特征进行了研究.通过对开滦矿区 10个矿井 47个煤层刻槽样品主要有害微量元素含量的统计,发现开滦矿区晚古生代煤中 Cr、 Ni、 Cu、 Zn、 Pb和 As富集.通过对原煤精煤中煤尾煤煤泥两套系列样品的分析,发现主要有害微量元素在精煤中都有不同程度的脱除,中煤中相对富集的元素有 Se和 Th,明显被脱除的元素有 Co和 Tl.除 Tl以外,尾煤中主要微量有害元素均有不同程度的富集,以 As的富集率最高,可达 34.4%, Hg的富集率最低,为 1.1%.煤泥中所有微量有害元素均相对富集,以 Hg的相对富集率最高,达 78.4%.因此,如果对尾煤和煤泥加以利用,需要特别关注 As和 Hg等微量有害元素对环境的影响.主要微量有害元素在洗选过程中的分配行为主要受控于它在煤中的赋存状态.  相似文献   

15.
潮水盆地位于内蒙古西南部和甘肃省东部地区,是我国中新生代含煤断陷盆地.采用粉晶X衍射、ICP-MS、ICP-AES 方法,从煤的岩石学、煤化学及煤地球化学的理论出发,对潮水盆地西部煤样进行了煤化学、显微组分、矿物学及地球化学分析.其研究结果表明潮水盆地西部煤以中等水分、低一中灰分和硫质量分数、高挥发分产率为特征,煤级为烟煤—亚烟煤;煤中有机显微组分以镜质组为主,惰性组次之,煤相类型以潮湿森林沼泽相为主,其次为较浅覆水森林沼泽相;煤中的常量矿物以石英和高岭石为主,部分样品中含有黄铁矿、方解石、菱铁矿和少量的微斜长石;煤中除Sr、B和Cs质量分数相对较高外,其他微量元素质量分数普遍较低.Cr、Ga、Pb、Li、Cu、Ge、V、Sc、Be、W、Th和As,以及Ti和Nb主要与硅铝酸盐矿物有好的亲和性;B和Sr可能主要以碳酸盐矿物的形式存在;S和Mo可能主要以硫化物矿物的形式存在;另外,Ti、Zr、Nb和Ta有好的相关性,可能与重矿物有关.  相似文献   

16.
The mineral and inorganic chemical composition of five types of samples from the Pernik subbituminous coals and their products generated from the Pernik preparation plant were studied. They include feed coal, low-grade coal, high-grade coal, coal slime, and host rock. The mineral matter of the coals contains 44 species that belong mainly to silicates, carbonates, sulphates, sulphides, and oxides/hydroxides, and to a lesser extent, chlorides, biogenic minerals, and organic minerals. The detrital minerals are quartz, kaolinite, micas, feldspars, magnetite, cristobalite, spessartine, and amphibole. The authigenic minerals include various sulphides, silicates, oxihydroxides, sulphates, and carbonates. Several stages and substages of formation were identified during the syngenetic and epigenetic mineral precipitations of these coals. The authigenic minerals show the greatest diversity of mineral species as the epigenetic mineralization (mostly sulphides, carbonates, and sulphates) dominates qualitatively and quantitatively. The epigenetic mineralization was a result of complex processes occurring mostly during the late development of the Pernik basin. These processes indicate intensive tectonic, hydrothermal and volcanic activities accompanied by a change from fresh to marine sedimentation environment. Thermally altered organic matter due to some of the above processes was also identified in the basin. Most of the trace elements in the Pernik coals (Mo, Be, S, Zr, Y, Cl, Ba, Sc, Ga, Ag, V, P, Br, Ni, Co, Pb, Ca, and Ti) show an affinity to OM and phases intimately associated with OM. Some of the trace elements (Sr, Ti, Mn, Ba, Pb, Cu, Zn, Co, Cr, Ni, As, Ag, Yb, Sn, Ga, Ge, etc.) are impurities in authigenic and accessory minerals, while other trace elements (La, Ba, Cu, Ce, Sb, Bi, Zn, Pb, Cd, Nd, etc.) occur as discrete phases. Elements such as Sc, Be, Y, Ba, V, Zr, S, Mo, Ti, and Ga exceed Clarke concentrations in all of the coal types studied. It was also found that a number of elements in the Pernik coals (F, V, As, Pb, Mo, Li, Sr, Ti, Ga, Ni, Ge, Cr, Mn, etc.) reveal mobility in water and could have some environmental concerns.  相似文献   

17.
INTRODUCTIONMany environmental problems may arise during coal min-ing and utilization. Among these prob1ems, much attention hasbeen paid to S(), and NO. emission during coal combustion.But the environmental effects produced by hazardous elementsduring coal mining and utilization are also important and de-serve to be studied (Goodazi, 1995; Finkelman, 1993; Valk-ovic, l983). For example, when coal wastes are used for landreclamation, the harmful elements in them may pollute water,soil an…  相似文献   

18.
贵州六枝、水城煤田晚二叠世煤的微量元素特征   总被引:4,自引:0,他引:4  
通过对六枝和水城煤田 10个煤矿主要可采煤层的 45个煤样品的常量和微量元素系统研究 ,概括了这两个煤田煤中常量和微量元素的丰度和分布特征 ;阐述了煤中微量元素的亲合性。这两个煤田煤中的全硫含量在受海水影响的煤层中较高 (最高达 7.5 % ) ,而在非海水影响的煤层中较低 ( 0 .3% )。六枝煤田的全硫含量明显高于水城煤田。Ca-Mn-Ge的平均含量在六枝煤田较低 ,而在水城煤田相对较高。在这两个煤田和不同的煤层之间 ,煤中微量元素含量的变化较小。与世界烟煤中一般含量范围相比 ,这两个煤田的特征是 Mn,V,Cu,L i,Zr,Nb,Ta,Hf,T1,Th和 U的含量相对高。  相似文献   

19.
Some townships in Xuan Wei County, Yunnan Province, have one of the highest lung cancer mortality rates in China and the epidemic disease in the area has generally been attributed to the polycyclic aromatic hydrocarbons (PAHs) released from domestic coal burning. However, the cancer-causing culprit is not settled as Tian [Tian, L., 2005. Coal Combustion Emissions and Lung Cancer in Xuan Wei, China. Ph.D. thesis, University of California, Berkeley.] found nanometer quartz in these coals, soot emissions, and lung cancer tissues. We have conducted mineralogical and geochemical studies of the coals from Xuan Wei for the purpose of shedding light on the minerals which may be related to the epidemic lung cancer. In this paper, abundances, modes of occurrence, and origins of minerals and elements in the coals from two mines in Xuan Wei have been studied using optical microscope, low-temperature ashing, X-ray diffraction analysis, scanning electron microscope equipped with energy-dispersive X-ray spectrometer, and inductively-coupled plasma mass spectrometry. The minerals in the coals are mainly composed of quartz, chamosite, kaolinite, and calcite. The particle size of quartz is rather small, mostly less than 20 μm and it is of authigenic origin. Chamosite occurs mainly as cell-fillings. The occurrence of quartz and chamosite indicates that they were derived from the hydrothermal fluids. Epigenetic calcite is derived from calcic fluids. Kaolinite is derived mainly from sediment source region of Kangdian Oldland to the west of coal basin. The composition of Xuan Wei coal is high in SiO2, Fe2O3, TiO2, CaO, MnO, V, Co, Ni, Cu, and Zn. The high SiO2 content is attributed to quartz, and the Fe2O3 content to chamosite. The high Mn and low Mg contents in the coal indicate the inputs of hydrothermal fluids. CaO occurs mainly in epigenetic calcite. Elements Ti, Co, Ni, Cu, Zn, and rare earth elements were derived from the basaltic rocks at sediment source region.  相似文献   

20.
Concentrations of chalcophile elements (As, Co, Cu, Hg, Mo, Ni, Pb, Sb and Zn) in western Canadian coals were determined using INAA and AAS. The concentrations of these elements in western Canadian coals are within the range for most world coals. However, there are some high values for coals from outcrops and from areas which are not currently being mined.Arsenic content in the majority of western Canadian coals, particularly those currently being mined, is low (0.2–3 ppm). However, there are coals with high arsenic content; for example, lignites from Hat Creek A zone contain between 4.0 and 14.0 ppm As. In some samples from Comox and Suquash, the As concentration is as high as 240 ppm and 1400 ppm, respectively. The enrichment of As in high arsenic coals is related to the geology and nature of country rocks associated with the coal seams. The concentration of other elements for most western Canadian coals, particularly those being mined, are within the range for most world coals. In these coals, the concentration ranges (in ppm) of chalcophile elements are 0.3-3.6 for Sb, 0.8-4.6 for Co, 7–35 for Cu, <0.1 for Hg, 2–6 for Mo, 4–94 for Ni, 6–22 for Pb, 2–7 for Se and 7–110 for Zn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号