首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 534 毫秒
1.
对经离子渗氮处理的20钢,进行610℃下不同保温时间的盐浴渗铬,获得了不同时期的复合渗铬层.利用光学显微镜、X射线衍射仪、扫描电镜及能谱仪、透射电镜对这种复合渗铬层的形成过程进行研究.结果表明,复合渗铬层主要由铬氮化合物相组成,其形成是在消耗原离子渗氮化合物层的基础上实现;并且,在复合渗铬初期,复合渗铬化合物层主要由CrN相组成,在复合渗铬后期,原CrN相化合物层的最表层开始转变为Cr2N相,因而形成较致密的Cr2N/CrN双层结构渗铬层.横截面透射电镜观察表明,所制备的Cr2N/CrN双层结构为纳米结构渗铬层(CrN晶粒在100nm以下,Cr2N晶粒在100~300nm之间).摩擦学性能测试显示.这种纳米结构复合渗铬层有降低渗层摩擦系数的趋势.  相似文献   

2.
H13钢低温复合渗铬层组织及其形成机理   总被引:2,自引:1,他引:2  
应用扫描电镜(SEM)、微区成份分析(EDS)和X射线衍射研究了H13钢经离子渗氮后不同温度盐浴渗铬所得复合渗铬层的显微组织及其形成机制,并从热力学上探讨复合盐浴渗铬的可行性.H13钢复合渗铬化合物层为高铬化合物层,其相结构主要为CrN、(Cr,Fe)2N1-x和α-(Cr,Fe)组成;随渗铬温度的升高,复合渗铬试样表面上CrN和α相含量降低,而(Cr,Fe)2N1-x含量却增加并出现(Cr,Fe)2N1-x(0002)晶面择优取向,同时化合物层中出现氮浓度外低内高的层状结构.  相似文献   

3.
00Cr12Ni9Mo4Cu2Ti马氏体时效不锈钢离子渗氮组织和性能   总被引:1,自引:0,他引:1  
对00Cr12Ni9Mo4Cu2Ti马氏体时效不锈钢进行了离子渗氮处理,研究了不同渗氮条件下所形成的渗氮层的相结构与性能。结果表明:经离子渗氮后的00Cr12Ni9Mo4Cu2Ti马氏体时效不锈钢的表面硬度、耐磨性都有明显的提高,表面硬度最高达到了1350HV0.05。当样品在400℃渗氮时,表层新相主要由α相组成;当渗氮温度上升至500℃时,表层新相主要由αN相、γ′-Fe4N相、ε相组成,并有大量的CrN相形成;当渗氮温度高于600℃时,ε相、CrN的含量继续增加,γ′-Fe4N相逐渐减少,αN相几乎完全分解。伴随着CrN相的生成,样品的耐磨性得到了提高,表面耐腐蚀性能有一定下降。实验还观察到该马氏体时效不锈钢渗氮层中有微裂纹产生,裂纹的形成与样品的残余内应力和氮化物相生成有关。  相似文献   

4.
采用热反应扩散沉积法(TRD)对有无预渗氮处理的SKD11钢试样分别以950、900、850、800和750℃进行气体热渗铬。利用SEM和EDS测量铬原子扩散深度;根据经典动力学理论计算活化能及扩散系数;利用XRD分析相结构;再进行维氏硬度测量和耐磨实验。结果表明,经渗氮前处理的渗铬试样在各温度下铬原子扩散深度比未经渗氮均有增加,有预渗氮渗铬层最深达到20μm,未经渗氮渗铬层只有13μm,其活化能分别为106.09和147.47 k J/mol,表面硬度分别为1610及1760 HV。在各实验温度下,经渗氮预处理渗铬试样的耐磨性均比未经渗氮试样好,渗铬温度高于850℃耐磨性优于基材,低于850℃硬度虽然高于基材,但耐磨性不及基材。在较高温度(950和900℃)渗铬时,有渗氮预处理试样的渗铬层结构为Cr2C和Cr2N相,无渗氮预处理为Cr2C相;在较低温度(800和750℃)渗铬时,有渗氮预处理试样的渗铬层结构为Cr7C3和Cr N相,无渗氮预处理为Cr7C3相。  相似文献   

5.
处理温度对1Cr18Ni9Ti钢脉冲直流等离子渗氮的影响   总被引:5,自引:0,他引:5  
利用脉冲直流辉光等离子技术,在不同的温度下对1Cr18N i9Ti奥氏体不锈钢进行了渗氮处理。利用光学显微镜、显微硬度计、XRD以及电化学工作站对渗氮层进行了分析。结果表明,处理温度显著影响1Cr18N i9Ti钢渗氮层的结构与性能。处理温度≤440℃时,渗层为纯S相结构;处理温度在460~540℃之间时,为S相+CrN+Fe4N的混合组织;处理温度≥560℃时,为CrN+Fe4N的化合物层。可在较宽的温度范围内对该钢进行脉冲直流等离子渗氮,获得表面硬度高于基底5~6倍的渗氮层。渗氮层的厚度随处理温度的升高而增加,而抗腐蚀性能随着处理温度的升高呈下降趋势。  相似文献   

6.
采用多弧离子镀制备一种厚度为24.4μm的Cr/Cr2N/CrN多层结构涂层。采用场发射扫描电子显微镜(FESEM)、X射线光电子能谱(XPS)、能量散射谱(EDS)、X射线衍射(XRD)和透射电镜(TEM)对涂层进行表征,并用纳米压痕和划痕仪测试其硬度和结合力。用UMT-3MT往复式摩擦磨损试验机对涂层在大气和海水环境中的摩擦性能进行测试。结果表明,该涂层由3种相结构组成,分别是Cr相、Cr2N相和CrN相。相对于单层CrN涂层,多层涂层的结合力明显提高,该涂层的硬度为(21±2)GPa。多层结构涂层在人工海水中的耐蚀性能显著优于单层CrN涂层的耐蚀性能,且在大气和海水中多层结构涂层的摩擦因数均低于单层CrN涂层的摩擦因数。  相似文献   

7.
目的研究不同复合涂层的结构及其对力学性能的影响。方法采用等离子体增强磁控溅射系统在奥氏体不锈钢表面分别进行等离子体氮化、(Cr,Ti)N涂层、氮化+(Cr,Ti)N涂层、氮化+Cr+(Cr,Ti)N涂层四种复合表面强化处理。采用XRD、SEM、纳米压痕仪、摩擦磨损仪和划痕仪等分别研究了不同改性层对微观结构以及力学性能的影响。结果氮化后,形成了较高含氮量的过饱和固溶体相(γN),并伴有少量Cr_2N和Fe_2N析出,硬度及杨氏模量分别为18.3 GPa、264.7 GPa。氮化后原位沉积涂层有效避免了氮化物相的析出,过饱和氮原子向基体进一步扩散,增加了氮化层的深度。两种氮化后复合(Cr,Ti)N涂层的硬度和模量均高于单一的(Cr,Ti)N涂层(分别为20.2GPa和271.8GPa),其中氮化+(Cr,Ti)N涂层的硬度和模量均最高(分别为25.4 GPa和345.6 GPa),氮化+Cr+(Cr,Ti)N涂层次之(22.4 GPa和326.3 GPa)。由于氮化层起到了良好的梯度过渡作用,氮化+(Cr,Ti)N涂层的膜基结合力最高,从单一涂层的9.5 N提高到50.9 N,其摩擦系数降低到0.43,磨损量最低,仅为基体的0.66%。结论氮化+(Cr,Ti)N复合涂层的力学性能最佳。  相似文献   

8.
电弧等离子体辅助渗氮处理Cr12MoV钢的组织结构及硬度   总被引:1,自引:0,他引:1  
采用不同温度对Crl2MoV钢进行电弧等离子体辅助渗氮处理.采用X射线衍射(XRD)分析渗氮层的相组成,采用扫描电子显微镜(SEM)及光学显微镜分别观察渗氮样品表面形貌及横截面形貌,利用显微硬度计测试渗氮层的硬度分布.结果表明:实验钢渗氮层的结构由CrN+γ'-Fe4N+ε-Fe3N的化合物层及由含氮马氏体相α-Fe (N)组成,渗氮层的厚度随处理温度的升高而增加.渗氮处理后能明显提高Cr12MoV钢基体的显微硬度.  相似文献   

9.
处理温度对1Crl8Ni9Ti钢脉冲直流等离子渗氮的影响   总被引:1,自引:0,他引:1  
利用脉冲直流辉光等离子技术,在不同的温度下对1Cr18Ni9Ti奥氏体不锈钢进行了渗氮处理。利用光学显微镜、显微硬度计、XRD以及电化学工作站对渗氮层进行了分析。结果表明,处理温度显著影响1Cr18Ni9Ti钢渗氮层的结构与性能。处理温度≤440℃时,渗层为纯S相结构;处理温度在460~540℃之间时,为S相+CrN+Fe4N的混合组织;处理温度≥560℃时,为CrN+Fe4N的化合物层。可在较宽的温度范围内对该钢进行脉冲直流等离子渗氮,获得表面硬度高于基底5~6倍的渗氮层。渗氮层的厚度随处理温度的升高而增加,而抗腐蚀性能随着处理温度的升高呈下降趋势。  相似文献   

10.
李广宇  李刚  雷明凯 《表面技术》2022,51(6):300-306
目的 探讨活性屏等离子体源渗氮技术提高马氏体不锈钢硬度与耐蚀性能的可行性。方法 将2Cr13马氏体不锈钢进行350~550℃、6 h活性屏等离子体源渗氮处理,采用光学显微镜(OM)、电子探针显微分析仪(EPMA)和X射线衍射仪(XRD)分析渗氮层的组织、成分和相结构,使用显微硬度计测试渗氮层的显微硬度,利用电化学腐蚀试验解析评估渗氮层的耐蚀性能。结果 经活性屏等离子体源渗氮处理后,可在马氏体不锈钢表面形成厚度为2~45μm,N原子分数为20%~25%的渗氮层,其表面显微硬度达1050~1350HV0.25,是基体硬度的4~5倍。350℃时,渗氮层以ε-Fe2-3N相为主,且含有少量αN相;450℃时,渗氮层由αN、ε-Fe2-3N和γ’-Fe4N相构成;渗氮温度升至550℃时,渗氮层由α-Fe、CrN和γ’-Fe4N相构成,αN、ε-Fe2-3N相消失。350、450℃时,渗氮层在3.5%NaCl溶液中的阳极极化曲线出现明显钝化区,而未渗氮的2Cr13不锈钢并未发现钝化区,自腐蚀电位Ecorr由未渗...  相似文献   

11.
通过光镜、扫描电镜、X射线能谱仪、X射线衍射仪和AUTOLAB电化学工作站研究了H13钢在540~560℃离子渗氮8h再进行550℃低温盐浴复合渗铬后的表层相组织结构的转变.在550℃复合渗铬6h后CrN化合物层平均厚度为5μm,化合物层的显微硬度为1500HV.渗铬层主要由最外层的CrN、中间的扩散层和内部剩余的氮化物层组成.内部的氮化物层会随渗铬时间的延长而消失,转变的过程为ε-Fe2N→γ'-Fe4N→α-Fe.获得高硬度和强耐腐蚀性的表面层是由于生成了大量的细小的CIN晶粒.  相似文献   

12.
采用电弧离子镀在304不锈钢衬底上制备双层周期为1351~260 nm的Cr/CrN多层膜。扫描电镜清晰地显示Cr/CrN沉积膜的多层结构和层界。X射线衍射谱显示沉积的多层膜含有Cr、CrN和Cr_2N相。随着沉积膜双层周期的增加,制备的多层膜的硬度和弹性模量略有增加,但是所有多层膜的硬度和弹性模量都低于单层CrN膜的硬度和弹性模量。因为Cr层比其氮化物层软,所以多层膜的硬度随双层周期的缩短或Cr层体积分数的增加而减小。由于具有适当厚度的Cr层和氮化物层,双层周期为862 nm的Cr/CrN多层膜的压痕韧性最高。然而,由于拥有更多的氮化物相,双层周期为1351 nm的Cr/CrN多层膜的压痕韧性最低。Cr/CrN多层膜的压痕韧性与双层周期有关,具有适当厚度Cr层和氮化物层的Cr/CrN多层膜具有最高的压痕韧性。  相似文献   

13.
采用双辉等离子渗铬+离子渗氮的复合工艺,以T10钢为基材在560℃研究了该工艺对渗层硬化效果的影响。结果表明:离子渗氮前渗层表面有3-5μm的沉积层,组织致密并与基体结合紧密,基体组织无明显变化;沉积层含铬量达46%以上,扩散层深15-20μm;渗层表面物相均由Fe、Fe-Cr、Cr7C3、Cr23C6等组成;表面显微硬度达650-850HV,硬度向内呈梯度分布。渗镀层经离子渗氮后的组织与氮化前的组织无明显变化,但表面物相为Fe-Cr、Cr7C3、Cr23C6、CrN、Fe4N,表面显微硬度1000-1350HV,较未渗氮前提高65%以上,表明本复合工艺能有效提高铬渗镀层的显微硬度。  相似文献   

14.
采用磁过滤阴极真空弧离子镀(FCVAD)技术在纯锆表面制备了厚度约为4μm的Cr金属层,对比研究了它们在不同温度水蒸汽环境中的氧化行为,并利用XRD、XPS、SEM及EDS分析了Cr涂层及氧化膜的物相组成、微观结构及成分分布。结果表明,在900、1000和1100℃水蒸汽环境中,镀Cr涂层大幅度降低了锆的氧化速率,其单位面积氧化增重仅为同一温度下锆基体的1/4、1/6和4/9。氧化初期,Cr涂层表面生成一层均匀致密的Cr_2O_3膜,当Cr层被消耗完后,Cr_2O_3/Zr界面上部分Cr_2O_3被Zr还原成金属Cr,锆基体氧化生成ZrO_2。镀Cr涂层样品的氧化激活能达293.17 kJ/mol。  相似文献   

15.
采用静态阴极电弧蒸发法,在基体面向等离子体源的正表面和其背面沉积CrN涂层。研究氮气压力对涂层的结构、相组成、力学性能和摩擦学性能的影响。分别用扫描电镜、接触轮廓仪和X射线衍射仪对涂层的形貌和结构进行表征,采用纳米压痕法对其力学性能进行研究,并采用球盘式摩擦计对涂层的摩擦磨损性能进行研究。结果表明,涂层沉积过程中氮气压力的增加将导致相变的发生,其顺序为Cr_2N→Cr_2N+CrN→CrN。与沉积在基体背面的涂层相比,沉积在基体正面的涂层的粗糙度更高,这主要是正面涂层中大颗粒的数量较多造成的。基体正面涂层的硬度和弹性模量也较高。研究还发现,涂层的附着力与磨损率呈反比关系。  相似文献   

16.
金玉花  程融  柴利强  张学希  王鹏 《表面技术》2022,51(12):82-90, 108
目的 研究了真空、大气2种环境下CrN涂层的热稳定性与氧化行为。方法 采用反应磁控溅射技术在(100)取向的P型单晶硅基底上制备了CrN涂层。利用真空热脱附谱(TDS)、场发射扫描电子显微镜(FESEM)、拉曼光谱(Raman)、X射线衍射(XRD)和扫描电子显微镜(SEM)以及加装的能谱仪(EDS)等表征方法,研究了在不同温度下涂层的热稳定性与氧化行为。结果 在真空退火时,TDS结果表明CrN涂层中的N在664 ℃左右开始释放,在温度达到1 000 ℃时释放结束。而在温度高于900 ℃时释放速率和释放量开始迅速上升,在温度达到930 ℃时达到峰值。在加热过程中,涂层中的CrN相部分转变为Cr2N相,在温度达到1 000 ℃时,完全转变为CrSi2相。在大气环境中,当温度达到700 ℃时,涂层开始被氧化,涂层表面生成了一层约136 nm厚的致密氧化层,同时在氧化层下方生成了一层CrOxN1?x的过渡层,并且涂层也出现了Cr2O3的拉曼峰。当温度达到800 ℃时,Cr2O3氧化物拉曼峰和衍射峰的数量和强度显著增加,说明涂层表面生成的氧化物的结构由简单变为复杂,并且结晶性增强。此外,氧化物颗粒逐渐长大,氧化层厚度增加,在温度达到850 ℃时,氧化层厚度达到429 nm。当温度高于700 ℃时,CrN涂层沿着厚度方向的元素扩散行为是O元素的向内扩散和N、Cr元素的向外扩散,并且释放的N在氧化层下方富集,并没有释放出去。结论 CrN涂层在真空中的热稳定性在900 ℃左右,在大气中的热稳定性在700 ℃左右。在大气中致密的Cr2O3氧化层的形成对O元素的向内扩散和N、Cr元素的向外扩散具有很好的阻挡作用。氧化层的这种阻挡作用对涂层的内部起到保护作用,延缓了涂层进一步的氧化和分解,这是CrN涂层热稳定性较好的原因。  相似文献   

17.
采用等离子渗氮/电弧离子镀复合方法在H13模具钢表面制备出CrON涂层,研究氧流量对CrON复合涂层结构及抗铝液熔蚀性能的影响。结果表明,随着氧流量的增加,所制备的涂层主要物相由氮化物向氧化物转变,在氧流量较低时主要呈现面心立方CrN结构,而在氧流量为200mL/min时制备的涂层形成典型的Cr_2O_3晶体相特征。掺入适量的氧,CrN涂层柱状晶生长受到抑制,涂层结构更加致密。涂层表面缺陷和粗糙度随着氧含量的增加而增大。CrON复合涂层在铝液中的失效形式是局部点蚀。由于形成致密的结构和良好的热稳定性,在氧流量为50 mL/min时制备的涂层具有优异的抗铝液熔蚀能力,而氧流量较高时表面生成致密的Cr_2O_3抗氧化层也有利于提高抗铝液熔蚀性能。  相似文献   

18.
目的 采用离子渗氮技术强化40Cr钢基体,以提高大载荷条件下基体表面CrN涂层的耐磨性能。方法 首先采用离子渗氮技术强化40Cr钢基体,再采用多弧离子镀在强化后的基体表面上沉积硬质CrN涂层。采用金相显微镜和扫描电镜观察分析基体和涂层的微观形貌,采用划痕试验测试涂层与基体的结合力,采用维氏硬度表征涂层及基体不同深度的硬度,通过大载荷摩擦磨损试验研究基体强化对涂层耐磨性的影响。结果 经离子渗氮后,40Cr钢基体的表面硬度由380HV提高至879HV,渗层深度达到0.30 mm;多弧离子镀CrN涂层的表面硬度为2 380HV,厚度为33 μm,涂层的结合力达到37.79 N。摩擦磨损试验结果表明,40Cr钢基体的平均摩擦因数为0.92,磨损量为43.1 mg,磨痕宽度和深度分别为1 805、224 μm;经离子渗氮后40Cr钢基体的平均摩擦因数为0.68,磨损量为28.4 mg,磨痕的宽度和深度分别为1 260、156 μm;未强化基体表面CrN涂层的平均摩擦因数为0.55,磨损量为19.4 mg,磨痕的宽度和深度分别为884、89 μm,在摩擦磨损试验中出现了涂层剥落失效现象;经强化后基体表面CrN涂层的平均摩擦因数为0.42,磨损量为2.6 mg,磨痕的宽度和深度分别为328、16 μm,未出现涂层剥落现象。结论 采用离子渗氮强化基体的方法,使基体、渗氮层、CrN涂层形成了硬度梯度,提高了多弧离子镀CrN涂层的耐磨性能,避免在大载荷条件下出现因基体变形引起的涂层脱落失效。  相似文献   

19.
研究了40Cr钢普通离子氮化和强化离子氮化后的显微组织和物相组成,测定了氮化层的显微硬度和耐磨性。α″、CrN和Cr_2N相的弥散析出,是强化离子氮化优于普通离子氮化的原因。  相似文献   

20.
18Cr2Ni4WA钢氮化层强化机理的研究   总被引:1,自引:0,他引:1  
本文应用薄膜透射电镜方法对经不同温度一段及二段氮化后的18Cr2Ni4WA钢的内氮化层显微组织及其强化本质进行了研究.结果表明,该钢内氮化层形成过程可分为二个阶段:1.合金元素及氮原子在铁素体基体{100}α面上形成有序化的混合偏聚区;2.由偏聚区转变成平衡沉淀相CrN,它与基体的位相关系符合Baker-Nutting关系:(001)_(CrN)∥(001)α;[110]CrN∥[100]α在较低温度氮化时,CrN还可由碳化物转变而成.造成内氮化层高硬度的主要原因是铁素体基体内形成弥散的有序化混合偏聚区.在420—500℃氮化的条件下,内氮化层强度达最高值.随氮化温度升高,其硬度逐渐下降.采用低温 高温二段氮化时,由于低温形成的有序化偏聚区相当稳定,从而使氮化层的高硬度能保持到较高的温度,所以二段氮化在保持内氮化层高硬度的同时可以加速氮化过程,缩短氮化时间.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号