首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The Three Gorges Dam is the world's largest capacity hydropower station located in the Hubei province along the Yangtze River in China, which began operations in 2003. The dam also functions to store and regulate the downstream releases of water in order to provide flood control and navigational support in addition to hydropower generation. Flow regulation is particularly important for alleviating the impacts of low- and high-flow events during the summer rainy season (June, July, and August). The impact of dam operations on summer flows is the focus of this work. Naturalized flows are modelled using a canonical correlation analysis and covariates of subbasin-scale precipitation resulting in good model skill with an average correlation of 0.92. The model is then used to estimate natural flows in the period after dam operation. A comparison between modelled and gauged streamflow post 2003 is made and the impact of the dam on downstream flow is assessed. Streamflow variability is found to be strongly related to rainfall variability. An analysis of regional streamflow variability across the Yangtze River Basin showed a mode of spatially negatively correlated variability between the upper and lower basin areas. The Three Gorges Dam likely mitigated the occurrence of high-flow events at Yichang station located near the dam. However, the high flow at the remaining stations in the lower reach is not noticeably alleviated due to the diminishing influence of the dam on distant downstream flows and the impact of the lakes downstream of the dam that act to attenuate flows. Three types of flow regime changes between naturalized and observed flows were defined and used to assess the changes in the occurrence of high- and low-flow events resulting from dam operations.  相似文献   

2.
Water reservoirs exercise a considerable influence on hydrological processes and their influence can be treated as one of the influences of human activities on the hydrological cycle at the regional and even global scale. Long daily streamflow series from two gauging stations, Cuntan and Yichang, are analyzed to quantify the effect of the Gezhouba- and the Three Gorges Dams on the Yangtze River flow variations. The Cuntan- and Yichang stations are located up- and downstreams of these two dams, respectively. The quantification entails the employment of conventional multifractal analysis (MFA) and MF-detrended fluctuation analysis (MF-DFA). The streamflow series are divided into six segments based on the time when the Gezhouba- and Three Gorges Dams were constructed. Thus, the effect of these two dams can be compared through MF properties of streamflow before and after the construction of water reservoirs. The effect of the Gezhouba Dam on streamflow downstream may not be reflected by conventional MFA but can be seen from the results of MF-DFA. It should be due to the fact that MF-DFA is on the basis of fluctuations around the dominant trend, reflecting more local information; while the box-counting algorithms investigate the streamflow from the whole view. Particularly, for the inter-station comparison of results obtained by MF-DFA-based analysis, the strongest impact on the streamflow downstream is indicated by the most significant difference in generalized fractal dimension spectrum appearing during the construction of Gezhouba Dam. In addition, after the construction of Gezhouba Dam, the minimal MF dimension at Yichang station start to be less than that at Cuntan station, suggesting that the streamflow becomes less fluctuated, which should be attributed to the filter effect of water reservoir. This study presents a feasible way to evaluate, wholly and locally, the impact of water reservoirs on streamflow in other river basins in the world.  相似文献   

3.
Elucidation of the fluvial processes influenced by dams provides better understanding of river protection and basin management. However, less attention has been given to the erosion intensity distribution of riverbeds and its association with channel morphology and hydrological conditions. Based on hydrological and topographic data, the spatial and temporal distributions of erosion intensity (2002–2014) influenced by the Three Gorges Dam (TGD) were analyzed for the Jingjiang reach of the Yangtze River. The mechanisms underlying the distribution of erosion intensity in response to hydrological conditions were investigated. The results are as follows: (1) The erosion intensities of different discharges were not uniform, and moderate flow (10 000–27 000 m3/s) produced the largest erosion magnitude among all flow ranges. Owing to the hydrological changes caused by flood reduction and prolongation of moderate flow duration after the TGD began operating, up to 70% of the erosion amount was caused by moderate flows. (2) The lateral distribution of erosion intensity was extremely uneven, as the proportion of cumulative erosion of the low‐flow channel within the bankfull channel reached 88% in 2013. This caused the channel to become narrower and deeper. (3) The longitudinal distribution of erosion intensity was inhomogeneous. The erosion intensity in the wide reaches was greater than that in the narrow reaches, leading to smaller differences in channel morphology along the river. (4) Changes in hydrological conditions influenced by the TGD, significant reduction of sediment concentration along with flood abatement, and increased duration of moderate flow discharges were the main factors affecting erosion distribution in the post‐dam period. Our conclusions can be applied to the Yangtze River as a basis for riverbed change estimations, and river management strategies. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

4.
Comparisons of flow time series between preimpact and postimpact periods have been widely used to determine hydrological alterations caused by reservoir operation. However, preimpact and postimpact periods might also be characterized by different climatological properties, a problem that has not been well addressed. In this study, we propose a framework to assess the cumulative impact of dams on hydrological regime over time. The impacts of the Three Gorges Dam (TGD) on the flow regime of the Yangtze River were investigated using this framework. We reconstructed the unregulated flow series to compare with the regulated flow series during the same period (2010 to 2015). Eco‐surplus and eco‐deficit and the Indicators of Hydrologic Alteration (IHA) parameters were used to examine hydrological regime change. Among 32 IHA parameters, Wilcoxon signed‐rank test and principal component analysis identified the October median flow, 1‐ and 3‐day maximum flows, 1‐day minimum flow, and rise rate as representative indicators of hydrological alterations. Eco‐surplus and eco‐deficit showed that the reservoir also changed the seasonal regime of the flows by reducing autumn flow and increasing winter flow. Changes in annual extreme flows and October flows lead to negative ecological implications downstream of the TGD. Ecological considerations should be taken into account during operation of the TGD in order to mitigate the negative effects on the fluvial ecosystem in the middle reach of Yangtze River. The framework proposed here could be a robust method to assess the cumulative impacts of reservoir operation over time.  相似文献   

5.
Large dams and reservoirs alter not only the natural flow regimes of streams and rivers but also their flooding cycles and flood magnitudes. Although the effect of dams and reservoirs has been reported for some vulnerable locations, the understanding of the inner-basin variation with respect to the effects remains limited. In this study, we analyse the Three Gorges Dam (TGD) built on the Changjiang mainstream (Yangtze River) to investigate the dam effect variations in the system of interconnected water bodies located downstream. We investigated the effect of flow alterations along the downstream river network using discharge time series at different gauging stations. The river–lake interactions (referring to the interactions between the Changjiang mainstream and its tributary lakes i.e. the Dongting and Poyang lakes) and their roles in modifying the TGD effect intensity were also investigated in the large-scale river–lake system. The results show that the water storage of the tributary lakes decreased after the activation of the TGD. Severe droughts occurred in the lakes, weakening their ability to recharge the Changjiang mainstream. As a consequence, the effect of the TGD on the Changjiang flow increase during the dry season diminished quickly downstream of the dam, whereas its impact on the flow decrease during the wet season gradually exacerbated along the mainstream, especially at sites located downstream of the lake outlets. Therefore, when assessing dam-induced hydrological changes, special attention should be paid to the changes in the storage of tributary lakes and the associated effects in the mainstream. This is of high importance for managing the water resource trade-offs between different water bodies in dam-affected riverine systems.  相似文献   

6.
全球主要河流已成为受梯级水库控制的人工调节系统.河流鱼类作为淡水生态系统的重要组成部分,在人类对河流水能资源开发利用的进程中,面临着种群退化、多样性丧失的巨大胁迫.水库生态调度是在鱼类关键生命期人为营造满足鱼类需求的水文水动力条件,减缓水库不利生态影响的一种生态环保措施.然而,在生态调度的实践过程中,受水库不同运行方式...  相似文献   

7.
三峡大坝运行前后西洞庭湖鱼类群落结构特征变化   总被引:5,自引:4,他引:1  
鱼类是湿地生态系统中重要的组成部分,鱼类的群落结构动态直接反映湿地生境及外部驱动力的变化.三峡大坝运行后,长江中游江湖水文情势发生了变化,西洞庭湖地处洞庭湖西部,是受此变化影响最为直接的区域之一.为监测西洞庭湖鱼类群落结构变化特征,分析其变化原因,于2002年9月-2003年8月和2012年7月-2014年1月,在西洞庭湖进行了两次鱼类群落调查.共鉴定到鱼类7目17科91种,其中鲤形目最多,为58种,占总种数的63.7%.两次调查结果显示,三峡大坝运行后西洞庭湖鱼类物种数由85种下降到66种,Shannon-Wiener多样性指数和Pielou均匀度指数分别由5.00和1.11下降为4.14和1.00,鱼类个体小型化趋势明显.两次调查物种数和个体数量最多的类群均为底层、定居性、杂食性鱼类,且其比例有增加的趋势,而肉食性鱼类、中上层鱼类、半洄游性鱼类和产粘性卵、沉性卵鱼类个体数量占比均有减小的趋势,其中中上层鱼类变化有显著性差异.三峡大坝运行后10年间,西洞庭湖鱼类多样性呈现下降趋势.研究表明,西洞庭湖鱼类生境丧失、捕捞胁迫,加剧了一些特定类群的生存压力,并反映于鱼类群落结构的变化.  相似文献   

8.
Employing long‐range correlation, complexity features and clustering, this study investigated the influence of dam and lake‐river systems on the Yangtze River flow. The impact of the Gezhouba Dam and the lake systems on streamflow was evaluated by analysing daily streamflow records at the Cuntan, the Yichang and the Datong station. Results indicated no evident influence of the Gezhouba Dam on streamflow changes. Distinct differences in scaling behaviour, long‐range correlation and clustering of streamflow at the Datong station when compared with those at the Cuntan and Yichang stations undoubtedly showed the influence of water storage and the buffering effect of the lake systems between the Datong station and other two hydrological stations on streamflow in the lower Yangtze River basin. Decreased regularity, enhanced long‐range correlation and increased clustering of streamflow in the lower Yangtze River basin due to the effect of water storage of the lake systems were corroborated. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
《国际泥沙研究》2023,38(5):662-672
The evaluation of the trend of flood stage changes in alluvial rivers downstream of dams is important for flood management. However, the flood stage associated with a given discharge generally is nonstationary in river reaches with multiple tributaries. This is not only because of the dam-induced shifting in the cross-sectional area and/or channel roughness but also because of the backwater induced by high flows from the tributaries. To determine the total trend of the flood stage and quantify the separate contributions of hydrological and geomorphic effects, the current study proposed a framework approach consisting of hydrological analysis and multiscenario numerical modeling. By this means, the trend in the flood stage could be distinguished from the stage oscillation driven by varying factors, including extreme hydrologic events. The effects of chronic changes, including channel incision and flow resistance increase, also were quantitatively separated. This framework was applied to the Chenglingji–Datong (CD) reach downstream of the Three Gorges Dam (TGD) in the Yangtze River, China. The results indicated that the effect of the roughness increase counterbalanced the effect of channel incision when the flow discharge was beyond the bankfull level. The backwater effect induced by tributary inflow was the major cause of the flood stage rise in recent years. The method presented in the current study provides a useful tool for managers and engineers to obtain better insight into the driving mechanisms of flood stage changes in river reaches that are downstream of dams. These findings indicate that the flood stage may not decline or may even occasionally increase, although the cross-sectional area was enlarged by channel incision. Special attention should be given to the flood risk situation in the study reach after the TGD began operation.  相似文献   

10.
We investigated dam behaviours during high-flow events and their robustness against perturbations in meteorological conditions using the H08 global hydrological model. Differences in these behaviours were examined by comparing simulation runs, with and without dams and using multiple meteorological datasets, at a case-study site, Fort Peck Dam on the Missouri River, USA. The results demonstrated that dam-regulated river flow reduced temporal variability over large time periods and also dampened inter-forcing discrepancies in river discharge (smoothing effects). However, during wet years, differences in peak flow were accentuated downstream of the dam, resulting in divergence in simulated peak flow across the meteorological forcing (pulsing effect). The pulsing effect was detected at other major dams in global simulations. Depending upon the meteorological forcing, the dams act as a selective filter against high-flow events. Synergy between a generic dam scheme and differences in meteorological forcing data might introduce additional uncertainties in global hydrological simulations.  相似文献   

11.
Temperature plays an essential role in the ecology and biology of aquatic ecosystems. The use of dams to store and subsequently re-regulate river flows can have a negative impact on the natural thermal regime of rivers, causing thermal pollution of downstream river ecosystems. Autonomous thermal loggers were used to measure temperature changes downstream of a large dam on the Macquarie River, in Australia’s Murray-Darling Basin to quantify the effect of release mechanisms and dam storage volume on the downstream thermal regime. The magnitude of thermal pollution in the downstream river was affected by different release mechanisms, including bottom-level outlet releases, a thermal curtain (which draws water from above the hypolimnion), and spill-way release. Dam storage volume was linked to the magnitude of thermal pollution downstream; high storage volumes were related to severe thermal suppressions, with an approximate 10 °C difference occurring when water originated from high and low storage volumes. Downstream temperatures were 8 ̶ 10 °C higher when surface releases were used via a thermal curtain and the spillway to mitigate cold water pollution that frequently occurs in the river. Demonstrating the effectiveness of engineering and operational strategies used to mitigate cold water pollution highlight their potential contribution to fish conservation, threatened species recovery and environmental remediation of aquatic ecosystems.  相似文献   

12.
The Xiaolangdi Dam, completed in 2000, is second in scale in China to the Three Gorges Project. It has generated remarkable economic and social benefits but with profound impacts to the riverine and regional environments. This paper reports field monitoring of riparian groundwater in the Kouma section of the Yellow River to illustrate the interactions between dam‐regulated river flow and riparian groundwater. The results show that the hydrological condition in riparian zones downstream from the dam has changed from a typical wet–dry cycle to a condition of semi‐permanent dryness, resulting in degradation of the typical attributes and functions of the wetland ecosystem. Hydrological processes in the riparian zone have changed from a complex multiple flooding regime to a simple regime of dominant groundwater drainage towards the river, which only reverses temporarily during the water and sediment regulation period of the dam. Data on groundwater level and groundwater quality show that there are two key points, at ca 200 and 400 m from the river bank, which distinguish zones with different sensitivity to changes of river flow and indicate different interactions between river water and groundwater. The shallow groundwater quality also is negatively affected by the intensive agricultural development that has occurred since the dam was completed. Ecological restoration needs to be carried out to construct a protective natural riparian zone within ca 200 m from the river, this being an ecotone, which is key to the protection of both riparian groundwater and the river. The riparian zone from 200 to 400 m also should be treated as a transitional zone. In addition, ecologically sensitive agriculture and ecotourism organized by local communities would be beneficial in the area beyond 400 m. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
谢平 《湖泊科学》2017,29(6):1279-1299
长江是我国第一大河流,全长达6300 km.长江是一条生命之河,它的活力来自于干流、支流、湖泊和湿地的血脉沟通形成的独特生命系统.长江流域是世界生物多样性的热点区域,分布有鱼类400余种,其中纯淡水鱼类350种左右,特有鱼类多达156种.长江中下游是东亚季风气候下形成的洪泛平原区域,湖泊星罗棋布,并与江河相连,生活有珍稀水生哺乳动物——白鱀豚和江豚.1980s初中下游湖泊面积约有23123 km~2.1950—1970年间,沿江大建闸节制,除鄱阳湖(2933 km~2)和洞庭湖(2625 km~2)等外,绝大多数湖泊失去了与长江的自然联系,江湖阻隔使支撑长江鱼类的有效湖泊面积减少了76%.1981年,长江上建成了第一个大坝——葛洲坝;2003年,三峡大坝开始蓄水.长江干流的渔业捕捞量从1954年的43万t下降到1980s的20万t,最后到2011年的8万t(降幅为81%).与此完全不同的是,1950s以来,洞庭湖和鄱阳湖的渔产量分别在2~4万t之间徘徊.长江干流的饵料生物丰度不足两湖的1/7,因此干流对物种的承载力十分有限,以鱼为生的白鱀豚和江豚种群的衰退属于情理之中,加上酷捕误杀,白鱀豚已经灭绝,江豚也危在旦夕.葛洲坝的建设阻挡了鲟鱼和胭脂鱼等的生殖洄游通道,中华鲟和白鲟的灭绝已近在咫尺.长江上游建有1万多座水坝,大部分鱼类的生存受到威胁.根据对长江生物多样性危机成因的粗略估算,节制闸和水电站等水利工程"贡献"了70%,酷渔乱捕等其它因素"贡献"了30%.所谓的生态调度、鱼道或人工放流等也难以拯救膏肓之疾,即使在长江干流十年禁渔也难有根本改观.如果鄱阳湖和洞庭湖相继建闸,将使长江中下游的渔业资源量进一步衰退,江豚的灭绝在所难免,其它物种的灭绝将难以预料.长江在哭泣,众多的物种需要生态文明的呵护!  相似文献   

14.
葛洲坝下中华鲟(Acipenser sinensis)性腺退化严重吗?   总被引:2,自引:2,他引:0  
黄真理  王鲁海 《湖泊科学》2020,32(4):915-923
葛洲坝对中华鲟(Acipenser sinensis)性腺发育的影响,是一个存在争议的问题,其影响程度直接关系到中华鲟的种群生存.利用中华鲟洄游动力学模型和性腺发育模型,我们揭示了中华鲟在长江的种群结构特点、时空分布和性腺发育过程以及葛洲坝的影响.通过对相关文献的分析和评价,我们认为,在葛洲坝救鱼过程中,长江水产研究所柯福恩等(1985)对葛洲坝下中华鲟性腺退化的研究工作是扎实的,他们关于中华鲟性腺退化十分严重,产卵规模相当有限,若干年后资源要下降的结论是可靠的,也得到了1990s以来中华鲟持续衰退事实的证明.作为葛洲坝救鱼的重要专业机构,中国科学院水生生物研究所的相关成果否认中华鲟性腺退化的方法和材料,是不充分和不可靠的.利用新理论重新分析历史调查数据,我们给出中华鲟性腺发育严重退化的其他证据.研究表明,葛洲坝的阻隔效应导致中华鲟性腺退化率为75%左右;该问题被长期忽视或轻视,对中华鲟保护产生了严重影响.  相似文献   

15.
Hydrodynamic flow fields affect the ecological processes such as the water diversity and the distribution of organisms. Understanding the hydrodynamic and ecological processes is critical for the restoration and protection of especially fragile ecological habitats in river systems. This study uses turbulent flow to characterize the ecological behaviour of Chinese Sturgeon (Acipenser sinensis) in the Yangtze River. The Delft3D‐Flow model, which is first validated with field‐measured data, is used to simulate the flow field within spawning habitats of Chinese Sturgeon, downstream of Gezhouba Dam. The model‐simulated turbulent kinetic energy (TKE) and its distribution pattern are then used to characterize the hydraulic environment of the fish's spawning habitat. For the spawning habitat, downstream of Gezhouba Dam, the lower limit of TKE for the Chinese Sturgeon egg mass field is 0.025 m2/s2, which occurs at a velocity less than 1.7 m/s. Chinese Sturgeon prefers habitats with TKE range of 0.010 ~ 0.015 m2/s2 for resting. This suggests that discharge regimes provide the basis for ecological regulation of the Three Gorges Reservoir and the scientific reference for river management. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
黄真理  王鲁海 《湖泊科学》2020,32(5):1320-1332
长江水生生物保护面临巨大挑战,加强长江水生生物保护是当前国家的战略需求.中华鲟(Acipenser sinensis)是长江的旗舰物种,也是1980s葛洲坝救鱼的唯一物种.经过近40年努力和数以亿计的投入,中华鲟的种群数量持续衰退,走到濒临灭绝的边缘.如果不能很好汲取中华鲟保护的教训,长江水生生物保护将难以走出困境.本文回顾了葛洲坝救鱼以来中华鲟保护的历程并进行评价,我们认为:回避或轻视长江梯级水坝的影响,就难以准确认识中华鲟种群衰退的定量影响机制,也不可能采取针对性措施.因此,要避免重蹈中华鲟的覆辙,对中华鲟保护工作进行全面反思、改革和创新,是长江水生生物保护面临的重大战略问题.  相似文献   

17.
This paper presents a visually enhanced evaluation of the spatio-temporal patterns of the dam-induced hydrologic alteration in the middle and upper East River, south China over 1952–2002, using the range of variability approach (RVA) and visualization package XmdvTool. The impacts of climate variability on hydrological processes have been removed for wet and dry periods, respectively, so that we focus on the impacts of human activities (i.e., dam construction). The results indicate that: (1) along the East River, dams have greatly altered the natural flow regime, range condition and spatial variability; (2) six most remarkable indicators of hydrologic alteration induced by dam-construction are rise rate (1.16), 3-day maximum (0.91), low pulse duration (0.88), January (0.80), July (0.80) and February (0.79) mean flow of the East River during 1952–2002; and (3) spatiotemporal hydrologic alterations are different among three stations along Easter River. Under the influence of dam construction in the upstream, the degree of hydrologic changes from Lingxia, Heyuan to Longchuan station increases. This study reveals that visualization techniques for high-dimensional hydrological datasets together with RVA are beneficial for detecting spatio-temporal hydrologic changes.  相似文献   

18.
As the largest hydroelectric dam in the world, the Three Gorges Dam (TGD) has raised wide concerns over the environmental and ecological impacts since its dramatic effect on the downstream flow regime of the Yangtze River. Since 2003, the TGD has progressed from the initial operation period to the full operation period, with different effects on the downstream flow regime over each period. Although the upstream inflow change (USIC) of the TGD is a possibly additional factor affecting the downstream flow regime, this has drawn little attention. This study aims to quantify the individual contributions of the TGD and the USIC to the changes of the downstream flow regime over different operation periods of the dam. Using the Muskingum routing model and the Xin'anjiang rainfall–run‐off model, we reconstruct the discharge unregulated by the TGD for the post‐TGD period from 2003 to 2015. On this basis, the effects of the TGD and the USIC on the downstream flow regime are quantitatively assessed. Benchmarked against the flow regime during the pre‐TGD period from 1955 to 2002, it is found that the TGD and the USIC play considerable and comparable roles in affecting the downstream flow regime during the whole post‐TGD period from 2003 to 2015. Furthermore, the TGD appears to have a limited effect on the downstream flow regime during the initial operation period from 2003 to 2008 relative to the USIC. In contrast, during the full operation period from 2009 to 2015, the TGD plays a dominant role in changing the downstream flow regime, although the effect of the USIC cannot be neglected. The findings of this study are helpful to understand the exact impacts of the TGD on the downstream flow regime, thereby facilitating the development of a rational strategy for operating the dam.  相似文献   

19.
When studying the evolution of landscape, it is difficult to discriminate the influence of anthropogenic from natural causes, or recognise changes caused by different sources of human action. This is especially challenging when the influence of certain sources is overprinted. For instance, although dam closure is the most common method of altering river courses, dam construction is often preceded by hydro‐technical works such as channel straightening, embankment construction or sediment mining. Both dam construction and the hydro‐technical works that precede dam closure can result in changes in the balance between sediment supply and transport capacity, and often, changes in river planform. The main objective of this study was to verify whether the works preceding dam closure are an important driver of river planform changes on the lower Drava River (Hungary). The case study is based on geological and geophysical surveys, as well as the analysis of historical maps covering an anabranching, 23 km long valley section. We show that channel straightening conducted prior to dam closure resulted in a transition from a meandering to sinuous planform with channel bars. Dam construction itself then caused enhanced incision, exposure of bar surfaces, vegetation encroachment and the formation of an anabranching planform. Based on this study, we developed models of alluvial island and channel planform evolution downstream of dams. Dam construction enhances channel incision, narrowing, and the reduction of flow caused by earlier hydro‐technical works. Many rivers downstream of dams experience episodes of anabranching or wandering, with a multi‐thread pattern replacing sinuous, braided and meandering courses. When incision continues, river patterns evolve from anabranching to sinuous via the attachment of alluvial islands to floodplains. However, the timing and sequence of these changes depend on hydrological and sediment supply regimes, geomorphic settings and anthropogenic actions accompanying dam construction. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

20.
The rates and styles of channel adjustments following an abrupt and voluminous sediment pulse are investigated in the context of site and valley characteristics and time‐varying sediment transport regimes. Approximately 10.5 x 106 m3 of stored gravel and sand was exposed when Barlin Dam failed during Typhoon WeiPa in 2007. The dam was located on the Dahan River, Taiwan, a system characterized by steep river gradients, typhoon‐ and monsoon‐driven hydrology, high, episodic sediment supply, and highly variable hydraulic conditions. Topography, bulk sediment samples, aerial photos, and simulated hydraulic conditions are analyzed to investigate temporal and spatial patterns in morphology and likely sediment transport regimes. Results document the rapid response of the reservoir and downstream channel, which occurred primarily through incision and adjustment of channel gradient. Hydraulic simulations illustrate how the dominant sediment transport regime likely varies between study periods with sediment yield and caliber and with the frequency and duration of high flows. Collectively, results indicate that information on variability in sediment transport regime, valley configuration, and distance from the dam is needed to explain the rate and pattern of morphological changes across study periods. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号