首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 490 毫秒
1.
Wire‐shaped flexible supercapacitors (SCs) have aroused much attention due to their small size, light weight, high flexibility, and deformability. However, the previously reported wire‐shaped SCs usually involve complex assembly processes, encounter potential structural instabilities, and the influence of dynamic bending on the electrochemical stability of wire‐shaped SCs is also not clear. Here, a parallel double helix wire‐shaped supercapacitor (PDWS) protocol has been developed with two symmetric titanium@MnO2 fiber electrodes winded on a flexible nylon fiber by a simple and reliable process. The PDWSs show an operate voltage of 0.8 V, a high capacitance of 15.6 mF cm–2 and an energy density of 1.4 µWh cm–2. Due to rational structure design, the PDWSs demonstrate excellent mechanical and electrochemical stability under both static and dynamic deformations. Over 3500 bending cycles, 88.0% of the initial capacitance can still be retained. In terms of dynamic bending, it is found that the cyclic voltammetry curves show periodically fluctuations simultaneously with the bending frequency and the intensity of fluctuation increases with higher bending frequency, while the dynamic capacitance is almost not affected. With extraordinary mechanical flexibility and excellent electrochemical stability, the high performance PDWS is considered to be a promising power source for wearable electronics.  相似文献   

2.
Owing to the excellent physical properties of metal nitrides such as metallic conductivity and pseudocapacitance, they have recently attracted much attention as competitive materials for high‐performance supercapacitors (SCs). However, the voltage window for metal nitride‐based symmetric SCs is limited (0.6–0.8 V) in aqueous electrolyte due to the oxidation at high negative potentials. In this respect, ultra‐small tungsten nitride particles onto the phosphorous modified carbon fabric (W2N@P‐CF) are engineered as a promising hybrid electrode for pseudocapacitors. Additionally, the fact that the W2N@P‐CF electrode can operate in the negative potential region is exploited to design asymmetric pseudocapacitors by coupling with a polypyrrole on carbon fabric (PPy@CF) as the positive electrode. Remarkably, the W2N@P‐CF//PPy@CF asymmetric cell can be cycled in a wide voltage window of 1.6 V that is almost two times higher than that of metal nitrides symmetric SCs. The pseudocapacitive behavior with matching different potential regions of W2N@P‐CF and PPy@CF, considerably enhance performance of asymmetric device. The device delivers high volumetric capacity (7.1 F cm?3), high energy (2.54 mWh cm?3), power densities, and good cycling stability (88%) over 20 000 cycles. Thus, pseudocapacitive metal nitride‐based devices hold a great promise to provide high voltage and improved energy density in aqueous electrolyte.  相似文献   

3.
Rapid advances in functional electronics bring tremendous demands on innovation toward effective designs of device structures. Yarn supercapacitors (SCs) show advantages of flexibility, knittability, and small size, and can be integrated into various electronic devices with low cost and high efficiency for energy storage. In this work, functionalized stainless steel yarns are developed to support active materials of positive and negative electrodes, which not only enhance capacitance of both electrodes but can also be designed into stretchable configurations. The as‐made asymmetric yarn SCs show a high energy density of 0.0487 mWh cm?2 (10.19 mWh cm?3) at a power density of 0.553 mW cm?2 (129.1 mW cm?3) and a specific capacitance of 127.2 mF cm?2 under an operating voltage window of 1.7 V. The fabricated SC is then made into a stretchable configuration by a prestraining‐then‐releasing approach using polydimethylsiloxane (PDMS) tube, and its electrochemical performance can be well maintained when stretching up to a high strain of 100%. Moreover, the stretchable cable‐type SCs are stably workable under water‐immersed condition. The method opens up new ways for fabricating flexible, stretchable, and waterproof devices.  相似文献   

4.
High‐performance supercapacitors (SCs) are promising energy storage devices to meet the pressing demand for future wearable applications. Because the surface area of a human body is limited to 2 m2, the key challenge in this field is how to realize a high areal capacitance for SCs, while achieving rapid charging, good capacitive retention, flexibility, and waterproofing. To address this challenge, low‐cost materials are used including multiwall carbon nanotube (MWCNT), reduced graphene oxide (RGO), and metallic textiles to fabricate composite fabric electrodes, in which MWCNT and RGO are alternatively vacuum‐filtrated directly onto Ni‐coated cotton fabrics. The composite fabric electrodes display typical electrical double layer capacitor behavior, and reach an ultrahigh areal capacitance up to 6.2 F cm?2 at a high areal current density of 20 mA cm?2. All‐solid‐state fabric‐type SC devices made with the composite fabric electrodes and water‐repellent treatment can reach record‐breaking performance of 2.7 F cm?2 at 20 mA cm?2 at the first charge–discharge cycle, 3.2 F cm?2 after 10 000 charge–discharge cycles, zero capacitive decay after 10 000 bending tests, and 10 h continuous underwater operation. The SC devices are easy to assemble into tandem structures and integrate into garments by simple sewing.  相似文献   

5.
Tailored construction of advanced flexible supercapacitors (SCs) is of great importance to the development of high‐performance wearable modern electronics. Herein, a facile combined wet chemical method to fabricate novel mesoporous vanadium nitride (VN) composite arrays coupled with poly(3,4‐ethylenedioxythiophene) (PEDOT) as flexible electrodes for all‐solid‐state SCs is reported. The mesoporous VN nanosheets arrays prepared by the hydrothermal–nitridation method are composed of cross‐linked nanoparticles of 10–50 nm. To enhance electrochemical stability, the VN is further coupled with electrodeposited PEDOT shell to form high‐quality VN/PEDOT flexible arrays. Benefiting from high intrinsic reactivity and enhanced structural stability, the designed VN/PEDOT flexible arrays exhibit a high specific capacitance of 226.2 F g?1 at 1 A g?1 and an excellent cycle stability with 91.5% capacity retention after 5000 cycles at 10 A g?1. In addition, high energy/power density (48.36 Wh kg?1 at 2 A g?1 and 4 kW kg?1 at 5 A g?1) and notable cycling life (91.6% retention over 10 000 cycles) are also achieved in the assembled asymmetric flexible supercapacitor cell with commercial nickel–cobalt–aluminum ternary oxides cathode and VN/PEDOT anode. This research opens up a way for construction of advanced hybrid organic–inorganic electrodes for flexible energy storage.  相似文献   

6.
Printable supercapacitors are regarded as a promising class of microscale power source, but are facing challenges derived from conventional sandwich‐like geometry. Herein, the printable fabrication of new‐type planar graphene‐based linear tandem micro‐supercapacitors (LTMSs) on diverse substrates with symmetric and asymmetric configuration, high‐voltage output, tailored capacitance, and outstanding flexibility is demonstrated. The resulting graphene‐based LTMSs consisting of 10 micro‐supercapacitors (MSs) present efficient high‐voltage output of 8.0 V, suggestive of superior uniformity of the entire integrated device. Meanwhile, LTMSs possess remarkable flexibility without obvious capacitance degradation under different bending states. Moreover, areal capacitance of LTMSs can be sufficiently modulated by incorporating polyaniline‐based pseudocapacitive nanosheets into graphene electrodes, showing enhanced capacitance of 7.6 mF cm?2. To further improve the voltage output and energy density, asymmetric LTMSs are fabricated through controlled printing of linear‐patterned graphene as negative electrodes and MnO2 nanosheets as positive electrodes. Notably, the asymmetric LTMSs from three serially connected MSs are easily extended to 5.4 V, triple voltage output of the single cell (1.8 V), suggestive of the versatile applicability of this technique. Therefore, this work offers numerous opportunities of graphene and analogous nanosheets for one‐step scalable fabrication of flexible tandem energy storage devices integrating with printed electronics on same substrate.  相似文献   

7.
Skutterudite CoP3 holds a unique structural formation that exhibits much better electronic properties for obtaining high energy density supercapacitors. Herein, novel skutterudite Ni–CoP3 nanosheets are constructed by etching and coprecipitating at room temperature and subsequent low‐temperature phosphorization reaction. Benefiting from the enhanced electrical conductivity and more electroactive sites brought about by adjusting the electronic structure with Ni incorporating the Ni–CoP3 electrode with a battery‐type demonstrates an ultrahigh specific capacity of 0.7 mA h cm?2 and exceptional cycling stability. The asymmetric supercapacitor (ASC) device fabricated by employing Ni–CoP3 and activated carbon (AC) as positive and negative electrodes, resepectively, exhibits a remarkable high energy density of 89.6 Wh kg?1 at 796 W kg?1 and excellent stability of 93% after 10 000 cycles, due to the skutterudite structure. The skutterudite Ni–CoP3 shows a great potential to be an excellent next‐generation electrode candidate for supercapacitors and other energy storage devices.  相似文献   

8.
Planar supercapacitors with high flexibility, desirable operation safety, and high performance are considered as attractive candidates to serve as energy‐storage devices for portable and wearable electronics. Here, a scalable and printable technique is adopted to construct novel and unique hierarchical nanocoral structures as the interdigitated electrodes on flexible substrates. The as‐fabricated flexible all‐solid‐state planar supercapacitors with nanocoral structures achieve areal capacitance up to 52.9 mF cm?2, which is 2.5 times that of devices without nanocoral structures, and this figure‐of‐merit is among the highest in the literature for the same category of devices. More interestingly, due to utilization of the inkjet‐printing technique, excellent versatility on electrode‐pattern artistic design is achieved. Particularly, working supercapacitors with artistically designed patterns are demonstrated. Meanwhile, the high scalability of such a printable method is also demonstrated by fabrication of large‐sized artistic supercapacitors serving as energy‐storage devices in a wearable self‐powered system as a proof of concept.  相似文献   

9.
Graphene fiber based micro‐supercapacitors (GF micro‐SCs) have attracted great attention for their potential applications in portable and wearable electronics. However, due to strong π–π stacking of nanosheets for graphene fibers, the limited ion accessible surface area and slow ion diffusion rate leads to low specific capacitance and poor rate performance. Here, the authors report a strategy for the synthesis of a vertically oriented graphene nanoribbon fiber with highly exposed surface area through confined‐hydrothermal treatment of interconnected graphene oxide nanoribbons and consequent laser irradiation process. As a result, the as‐obtained fiber shows high length specific capacitance of 3.2 mF cm?1 and volumetric capacitance of 234.8 F cm?3 at 2 mV s?1, as well as excellent rate capability and outstanding cycling performance (96% capacitance retention after 10 000 cycles). Moreover, an all‐solid‐state asymmetric supercapacitor based on graphene nanoribbon fiber as negative electrode and MnO2 coated graphene ribbon fiber as positive electrode, shows high volumetric capacitance and energy density of 12.8 F cm?3 and 5.7 mWh cm?3 (normalized to the device volume), respectively, much higher than those of previously reported GF micro‐SCs, as well as a long cycle life with 88% of capacitance retention after 10 000 cycles.  相似文献   

10.
Flexible 3D nanoarchitectures have received tremendous interest recently because of their potential applications in flexible/wearable energy storage devices. Herein, 3D intertwined nitrogen‐doped carbon encapsulated mesoporous vanadium nitride nanowires (MVN@NC NWs) are investigated as thin, lightweight, and self‐supported electrodes for flexible supercapacitors (SCs). The MVN NWs have abundant active sites accessible to charge storage, and the N‐doped carbon shell suppresses electrochemical dissolution of the inner MVN NWs in an alkaline electrolyte, leading to excellent capacitive properties. The flexible MVN@NC NWs film electrode delivers a high areal capacitance of 282 mF cm−2 and exhibits excellent long‐term stability with 91.8% capacitance retention after 12 000 cycles in a KOH electrolyte. All‐solid‐state flexible SCs assembled by sandwiching two flexible MVN@NC NWs film electrodes with alkaline poly(vinyl alcohol) (PVA), sodium polyacrylate, and KOH gel electrolyte boast a high volumetric capacitance of 10.9 F cm−3, an energy density of 0.97 mWh cm−3, and a power density of 2.72 W cm−3 at a current density of 0.051 A cm−3 based on the entire cell. By virtue of the excellent mechanical flexibility, high capacitance, and large energy/power density, the self‐supported MVN@NC NWs paper‐like electrodes have large potential applications in portable and wearable flexible electronics.  相似文献   

11.
High‐performance supercapacitors (SCs) are important energy storage components for emerging wearable electronics. Rendering low‐temperature foldability to SCs is critically important when wearable devices are used in a cold environment. However, currently reported foldable SCs do not have a stable electrochemical performance at subzero temperatures, while those that are performing are not foldable. Herein, a freestanding pure‐carbon‐based porous electrode, namely, lamellar porous carbon stack (LPCS), is reported, which enables stable low‐temperature‐foldable SCs. The LPCS, which is fabricated with a simple vacuum filtration of a mixture of carbon fibers (CFs), holey reduced graphene oxides (HRGOs), and carbon nanotubes (CNTs), possesses a lamellar stacking of porous carbon thin sheets, in which the CFs act as the skeleton and the HRGOs and CNTs act as binders. The unique structure leads to excellent compression resilience, high foldability, and high electronic and ionic conductivity. SCs made with the LPCS electrodes and ionic liquid electrolyte show a high energy density (2.1 mWh cm?2 at 2 mA cm?2), low‐temperature long lifetime (95% capacity after 10 000 cycles at ?30 °C), and excellent low‐temperature foldability (86% capacity after 1000 folding cycles at ?30 °C).  相似文献   

12.
Graphene electrode–based supercapacitors are in high demand due to their superior electrochemical characteristics. A major bottleneck of using the supercapacitors for commercial applications lies in their inferior electrode cycle life. Herein, a simple and facile method to fabricate highly efficient supercapacitor electrodes using pristine graphene sheets vertically stacked and electrically connected to the carbon fibers which can result in vertically aligned graphene–carbon fiber nanostructure is developed. The vertically aligned graphene–carbon fiber electrode prepared by electrophoretic deposition possesses a mesoporous 3D architecture which enabled faster and efficient electrolyte‐ion diffusion with a gravimetric capacitance of 333.3 F g?1 and an areal capacitance of 166 mF cm?2. The electrodes displayed superlong electrochemical cycling stability of more than 100 000 cycles with 100% capacitance retention hence promising for long‐lasting supercapacitors. Apart from the electrochemical double layer charge storage, the oxygen‐containing surface moieties and α‐Ni(OH)2 present on the graphene sheets enhance the charge storage by faradaic reactions. This enables the assembled device to provide an excellent gravimetric energy density of 76 W h kg?1 with a 100% capacitance retention even after 1000 bending cycles. This study opens the door for developing high‐performing flexible graphene electrodes for wearable energy storage applications.  相似文献   

13.
Hierarchical nanostructure, high electrical conductivity, extraordinary specific surface area, and unique porous architecture are essential properties in energy storage and conversion studies. A new type of hierarchical 3D cobalt encapsulated Fe3O4 nanosphere is successfully developed on N‐graphene sheet (Co?Fe3O4 NS@NG) hybrid with unique nanostructure by simple, scalable, and efficient solvothermal technique. When applied as an electrode material for supercapacitors, hierarchical Co?Fe3O4 NS@NG hybrid shows an ultrahigh specific capacitance (775 F g?1 at a current density of 1 A g?1) with exceptional rate capability (475 F g?1 at current density of 50 A g?1), and admirable cycling performance (97.1% capacitance retention after 10 000 cycles). Furthermore, the fabricated Co?Fe3O4 NS@NG//CoMnO3@NG asymmetric supercapacitor (ASC) device exhibits a high energy density of 89.1 Wh kg?1 at power density of 0.901 kW kg?1, and outstanding cycling performance (89.3% capacitance retention after 10 000 cycles). Such eminent electrochemical properties of the Co?Fe3O4 NS@NG are due to the high electrical conductivity, ultrahigh surface area, and unique porous architecture. This research first proposes hierarchical Co?Fe3O4 NS@NG hybrid as an ultrafast charge?discharge anode material for the ASC device, that holds great potential for the development of high‐performance energy storage devices.  相似文献   

14.
Transparent flexible energy storage devices are considered as important chains in the next‐generation, which are able to store and supply energy for electronic devices. Here, aluminum‐doped zinc oxide (AZO) nanorods (NRs) and nickel oxide (NiO)‐coated AZO NRs on muscovites are fabricated by a radio frequency (RF) magnetron sputtering deposition method. Interestingly, AZO NRs and AZO/NiO NRs are excellent electrodes for energy storage application with high optical transparency, high conductivity, large surface area, stability under compressive and tensile strain down to a bending radius of 5 mm with 1000 bending cycles. The obtained symmetric solid‐state supercapacitors based on these electrodes exhibit good performance with a large areal specific capacitance of 3.4 mF cm?2, long cycle life 1000 times, robust mechanical properties, and high chemical stability. Furthermore, an AZO/NiO//Zn battery based on these electrodes is demonstrated, yielding a discharge capacity of 195 mAh g?1 at a current rate of 8 A g?1 and a discharge capacity of over 1000 cycles with coulombic efficiency to 92%. These results deliver a concept of opening a new opportunity for future applications in transparent flexible energy storage.  相似文献   

15.
Nanostructured conductive polymer hydrogels (CPHs) have been extensively applied in energy storage owing to their advantageous features, such as excellent electrochemical activity and relatively high electrical conductivity, yet the fabrication of self‐standing and flexible electrode‐based CPHs is still hampered by their limited mechanical properties. Herein, macromolecularly interconnected 3D graphene/nanostructured CPH is synthesized via self‐assembly of CPHs and graphene oxide macrostructures. The 3D hybrid hydrogel shows uniform interconnectivity and enhanced mechanical properties due to the strong macromolecular interaction between the CPHs and graphene, thus greatly reducing aggregation in the fiber‐shaping process. A proof‐of‐concept all‐gel‐state fibrous supercapacitor based on the 3D polyaniline/graphene hydrogel is fabricated to demonstrate the outstanding flexibility and mouldability, as well as superior electrochemical properties enabled by this 3D hybrid hydrogel design. The proposed device can achieve a large strain (up to ≈40%), and deliver a remarkable volumetric energy density of 8.80 mWh cm?3 (at power density of 30.77 mW cm?3), outperforming many fiber‐shaped supercapacitors reported previously. The all‐hydrogel design opens up opportunities in the fabrication of next‐generation wearable and portable electronics.  相似文献   

16.
Rational designing of the composition and structure of electrode material is of great significance for achieving highly efficient energy storage and conversion in electrochemical energy devices. Herein, MoS2/NiS yolk–shell microspheres are successfully synthesized via a facile ionic liquid‐assisted one‐step hydrothermal method. With the favorable interface effect and hollow structure, the electrodes assembled with MoS2/NiS hybrid microspheres present remarkably enhanced electrochemical performance for both overall water splitting and asymmetric supercapacitors. In particular, to deliver a current density of 10 mA cm?2, the MoS2/NiS‐based electrolysis cell for overall water splitting only needs an output voltage of 1.64 V in the alkaline medium, lower than that of Pt/C–IrO2‐based electrolysis cells (1.70 V). As an electrode for supercapacitors, the MoS2/NiS hybrid microspheres exhibit a specific capacitance of 1493 F g?1 at current density of 0.2 A g?1, and remain 1165 F g?1 even at a large current density of 2 A g?1, implying outstanding charge storage capacity and excellent rate performance. The MoS2/NiS‐ and active carbon‐based asymmetric supercapacitor manifests a maximum energy density of 31 Wh kg?1 at a power density of 155.7 W kg?1, and remarkable cycling stability with a capacitance retention of approximately 100% after 10 000 cycles.  相似文献   

17.
Asymmetric supercapacitors (ASCs) are emerging as a new class of energy storage devices that could potentially meet the increasing power and energy demand for next‐generation portable and flexible electronics. Yet, the energy density of ASC is severely limited by the low capacitance of the anode side, which commonly uses the carbon‐based nanomaterials. Here, the demonstration of sulfur‐doped MoO3?x nanobelts (denoted as S‐MoO3?x) as the anode for high‐performance fiber‐shaped ASC are reported. The Mo sites in MoO3 are intentionally modulated at the atomic level through sulfur doping, where sulfur could be introduced into the MoO6 octahedron to intrinsically tune the covalency character of bonds around Mo sites and thus boost the charge storage kinetics of S‐MoO3?x. Moreover, the oxygen defects are occurring along with sulfur‐doping in MoO3, enabling efficient electron transport. As expected, the fiber‐shaped S‐MoO3?x achieves outstanding capacitance with good rate capability and long cycling life. More impressively, the fiber‐shaped ASC based on S‐MoO3?x anode delivers extremely high volumetric capacitance of 6.19 F cm?3 at 0.5 mA cm?1, which makes it promising as one of the most attractive candidates of anode materials for high‐performance fiber‐shaped ASCs.  相似文献   

18.
Free‐standing paper‐like thin‐film electrodes have great potential to boost next‐generation power sources with highly flexible, ultrathin, and lightweight requirements. In this work, silver‐quantum‐dot‐ (2–5 nm) modified transition metal oxide (including MoO3 and MnO2) paper‐like electrodes are developed for energy storage applications. Benefitting from the ohmic contact at the interfaces between silver quantum dots and MoO3 nanobelts (or MnO2 nanowires) and the binder‐free nature and 0D/1D/2D nanostructured 3D network of the fabricated electrodes, substantial improvements on the electrical conductivity, efficient ionic diffusion, and areal capacitances of the hybrid nanostructure electrodes are observed. With this proposed strategy, the constructed asymmetric supercapacitors, with Ag quantum dots/MoO3 “paper” as anode, Ag quantum dots/MnO2 “paper” as cathode, and neutral Na2SO4/polyvinyl alcohol hydrogel as electrolyte, exhibit significantly enhanced energy and power densities in comparison with those of the supercapacitors without modification of Ag quantum dots on electrodes; present excellent cycling stability at different current densities and good flexibility under various bending states; offer possibilities as high‐performance power sources with low cost, high safety, and environmental friendly properties.  相似文献   

19.
Compared with 2D S‐based and Se‐based transition metal dichalcogenides (TMDs), Te‐based TMDs display much better electrical conductivities, which will be beneficial to enhance the capacitances in supercapacitors. However, to date, the reports about the applications of Te‐based TMDs in supercapacitors are quite rare. Herein, the first supercapacitor example of the Te‐based TMD is reported: the type‐II Weyl semimetal 1Td WTe2. It is demonstrated that single crystals of 1Td WTe2 can be exfoliated into the nanosheets with 2–7 layers by liquid‐phase exfoliation, which are assembled into air‐stable films and further all‐solid‐state flexible supercapacitors. The resulting supercapacitors deliver a mass capacitance of 221 F g?1 and a stack capacitance of 74 F cm?3. Furthermore, they also show excellent volumetric energy and power densities of 0.01 Wh cm?3 and 83.6 W cm?3, respectively, superior to the commercial 4V/500 µAh Li thin‐film battery and the commercial 3V/300 µAh Al electrolytic capacitor, in association with outstanding mechanical flexibility and superior cycling stability (capacitance retention of ≈91% after 5500 cycles). These results indicate that the 1Td WTe2 nanosheet is a promising flexible electrode material for high‐performance energy storage devices.  相似文献   

20.
Flexible supercapacitors with high electrochemical performance and stability along with mechanical robustness have gained immense attraction due to the substantial advancements and rampant requirements of storage devices. To meet the exponentially growing demand of microsized energy storage device, a cost‐effective and durable supercapacitor is mandatory to realize their practical applications. Here, in this work, the fabrication route of novel electrode materials with high flexibility and charge‐storage capability is reported using the hybrid structure of 1D zinc oxide (ZnO) nanorods and conductive polyvinylidene fluoride‐tetrafluoroethylene (P(VDF‐TrFE)) electrospun nanofibers. The ZnO nanorods are conformably grown on conductive P(VDF‐TrFE) nanofibers to fabricate the light‐weighted porous electrodes for supercapacitors. The conductive nanofibers acts as a high surface area scaffold with significant electrochemical performance, while the addition of ZnO nanorods further enhances the specific capacitance by 59%. The symmetric cell with the fabricated electrodes presents high areal capacitance of 1.22 mF cm?2 at a current density of 0.1 mA cm?2 with a power density of more than 1600 W kg?1. Furthermore, these electrodes show outstanding flexibility and high stability with 96% and 78% retention in specific capacitance after 1000 and 5000 cycles, respectively. The notable mechanical durability and robustness of the cell acquire both good flexibility and high performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号