首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
基于回波数据的机载双天线InSAR运动补偿   总被引:1,自引:1,他引:0  
基于定位定向系统(position and orientation system,POS)测量数据实现补偿不适用于基线非刚性的系统,因而研究了基于回波数据的干涉相位误差补偿方法——频谱分割方法,分析了干涉相位误差与载机姿态变化造成的斜距误差之间的关系,阐明了算法原理及适用条件.分析了算法的关键参数对补偿精度的影响,提出定量化的选取标准.基于相位误差随距离向变化的模型,改善了算法精度,给出了算法流程.最后利用该算法处理了实际机载双天线InSAR数据,结果表明该方法具有较高的精度,可以在缺乏测量数据的情况下完成干涉相位误差补偿.  相似文献   

2.
针对超宽带传感器网络室内定位问题,建立了一种符合IEEE 802.15.4a标准的超宽带室内传播信道模型.在此模型基础上提出基于最大似然估计的RSsI测距方法,给出了测距误差的Cramer-Rao下界(CLRB),分析了定位误差与测距误差的关系并应用到定位算法中,最后提出一种面向测距和定位的超宽带传感器网络模型.仿真实验结果表明采用该信道模型,测距和定位算法,显著提高无线传感器网络的测距和定位性能.  相似文献   

3.
为了减小室外无人机(unmanned aerial vehicle,UAV)监测过程中的定位误差,对室外UAV进行实时定位,提出了一种基于随机森林的Chan-Taylor三维定位算法。通过K近邻对定位数据扩展后,根据Chan-Taylor算法将随机信号多径噪声转化为高斯分布,便于模型提取信号特征。使用交叉验证,实现随机森林特征参数与混淆矩阵阈值的自适应确定,并用该阈值衡量模型的一致性。利用分类结果更新UAV定位权值矩阵,有效地补偿目标高度数据。此外,使用标定UAV对设备误差进行估计,校正定位结果。理论分析与仿真结果表明,该算法能够有效地提高UAV定位精度,实现利用移动通信基站对UAV进行无源定位。  相似文献   

4.
针对经典扩展卡尔曼滤波(EKF)依赖于未知参数动态模型的准确程度这一问题,提出了一种基于当前星敏感器观测信息的模型误差补偿算法.该算法利用状态估计信息及当前矢量观测值,以预报误差最小为准则,对陀螺输出模型中的陀螺漂移进行补偿,进而利用修正后的陀螺测量模型预报卫星姿态,从而显著地提高了系统的定姿性能.仿真实验表明,在无陀螺漂移先验信息的情况下,该算法能够有效地补偿陀螺漂移引起的模型误差,定姿效果优于EKF.  相似文献   

5.
针对干涉式光纤陀螺仪温漂误差补偿准确性不高的问题,设计了基于RBF神经网络的改进型温漂误差补偿系统。根据对热致非互易相位延迟的深入分析,对不同条件下的热致非互异性相位延迟进行了定性的分析和定量的仿真;建立了基于温度、温度变化量和温度相乘量的温漂误差模型;设计了基于升降温实验的温漂误差补偿模型辨识方法,并采用RBF神经网络精确辨识该温漂误差模型参数;基于TMS320F28335、高精度温度测量单元、解编码电路和辅助电路设计,完成了温漂误差补偿系统设计;提出了用于评估温漂误差补偿系统的均方差评估公式。论文给出了温漂误差补偿系统的设计方法和实现步骤。温补实验对比结果表明,该温漂误差补偿系统的补偿精度高、可靠性好,能够将光纤陀螺仪输出精度提高一个数量级,可广泛用于干涉式光纤陀螺仪的温漂误差补偿。  相似文献   

6.
提出采用补偿单点定位误差的方法提高GPS姿态测量系统的精度。介绍GPS姿态测量系统的直接计算法,然后采用Z变换增强FASF算法求解载波相位整周模糊值,最后给出了采用补偿单点定位误差的GPS姿态测量系统的系统流程和计算机实验结果。实验表明,提出的方法可有效地提高姿态测量系统的测姿精度。  相似文献   

7.
基于混沌粒子群优化算法的弹性飞机模型降阶   总被引:1,自引:0,他引:1  
传统的弹性飞机模型降阶算法主要有平衡截断法、平衡奇异摄动法等,但这些算法的缺陷就是得到的降阶模型只适用于特定的频段内.以某弹性飞机纵向运动模型为例,在合理选择时域模型降阶匹配误差函数的基础上,首次将混沌粒子群优化算法用于弹性飞机的模型降阶.仿真结果表明,与传统的弹性飞机模型降阶算法相比,基于混沌粒子群优化算法得到的降阶模型能在更宽广的频域内和时域内更好地近似全阶模型,取得了更好的降阶效果.  相似文献   

8.
以捷联红外导引头的工程应用为研究背景,针对刻度尺误差带来的隔离度问题,提出一种基于多模型(multiple model,MM)的隔离度在线补偿方法。建立了捷联红外导引头隔离度模型,分析了隔离度对导弹制导系统稳定性和制导精度的影响;对刻度尺误差进行离散建模,采用基于MM的滤波算法,实时更新每个模型与真实值匹配的条件概率,得到刻度尺误差的估计值,最后将当前时刻的刻度尺误差估计值代入到制导回路进行在线补偿。研究结果表明,捷联导引头隔离度的存在会削弱制导系统稳定性、降低制导精度,特别在寄生回路正反馈时影响更为严重;所提出的基于MM的隔离度在线补偿方法可较好地实时估计出作用于系统的刻度尺误差,并有效实现了对刻度尺误差引起的隔离度的在线抑制,具有较好的鲁棒性和自适应性,达到了改善制导性能,提高制导精度的目的。  相似文献   

9.
基于塔康系统的斜距、方位和高程可对目标定位,但较大的量测误差影响定位精度。为提高估计精度,研究塔康中最佳线性无偏估计(best linear unbiased estimation, BLUE)滤波器的实现。建立地面站对目标的量测模型,并分析量测转换误差特性,推导出对应的BLUE滤波模型;针对目标从地面站上空过顶时出现无效量测的问题,通过对高程量测补偿的方法予以克服,解决传统算法在强非线性量测下误差较大的弊病。与经典方法的性能对比表明,改进算法有效地抑制了强非线性量测下的滤波发散,有很强的鲁棒性和实时性。  相似文献   

10.
对已经初步聚焦的低频超宽带(ultra wideband, UWB)合成孔径雷达(synthetic aperture radar, SAR)图像进行基于图像域的相位误差补偿,可进一步提高图像聚焦质量。依据UWB SAR运动误差模型,提出了基于条带式相位梯度自聚焦(strip phase gradient autofocus, SPGA)算法的相位误差补偿方法。该方法有效地补偿大合成孔径、宽测绘带低频UWB SAR图像中的二维空变相位误差。仿真和实测数据处理结果验证了所提方法的有效性。  相似文献   

11.
大型机场终端区飞机的进近着陆通常利用仪表着陆系统(instrument landing system, ILS), 但由于价格及环境条件等原因, 部分机场没有配备ILS。针对未配备ILS的机场终端区, 提出一种基于误差判断因子, 结合高程异常补偿算法, 利用大气数据系统(air data system, ADS), 捷联式惯性导航系统(strapdown inertial navigation system, SINS)和北斗导航系统(beidou navigation system, BDS)组合进行高度计算的优化算法, 提高飞机进近过程中高度定位的精度。通过结合机场终端区高程异常, 建立新的Kalman滤波高度量测方程, 对组合导航系统高度定位算法进行优化与仿真。仿真结果表明, 通过终端区高程异常补偿, 可以降低BDS高度误差, 抑制SINS误差发散, 在飞机受静压源误差影响的情况下, 组合后的高度定位误差相对于单系统高度定位的误差可降低41.52%, 高度定位精度改善较好。  相似文献   

12.
高精度激光陀螺惯导系统广泛应用于车载自主定位定向当中。当不存在外部测速设备的条件下,一般采用零速修正(zero velocity update,ZUPT)对导航误差的发散过程进行约束。常规ZUPT导航算法中重力矢量采用正常重力模型计算获得,忽略了重力扰动对导航精度的影响。考虑到车载自主导航系统对定位精度的要求,本文从重力扰动对惯性导航误差的影响机理分析入手,指出重力扰动是影响高精度ZUPT导航精度的最主要误差源之一。设计提出了两种适用于车载应用的重力扰动实时补偿方案,并在重力扰动变化剧烈的山区地带进行了长距离车载试验。试验结果表明,对于同一组跑车数据,导航时间2 h ZUPT间隔10 min,激光陀螺惯导系统的水平定位精度由补偿前的8.93 m提高到了补偿后的3.75 m,高程定位精度由补偿前的1.63 m提高到了补偿后的0.80 m。重力扰动补偿方法具有重要的工程应用价值。  相似文献   

13.
接收信号强度(received signal strength, RSS)浮动和无线接入点缺失是制约无线局域网(wireless local area network, WLAN)定位精度的主要问题。利用智能终端已有的MARG(magnetic,angular rate,and gravity)传感器,设计了基于粒子滤波和卡尔曼滤波的数据融合算法,实现了一个低成本高精度的WLAN/MARG组合定位系统。该系统利用WLAN和MARG定位技术的互补特性,有效校正了由RSS浮动引起的定位误差和由传感器噪声引起的累积误差。室内WLAN环境下的实验结果表明,本文所提系统,相比WLAN和MARG定位系统,定位均方根误差分布减少了62%和91%,并且有效扩大了系统应用范围。  相似文献   

14.
单轴旋转SINS方位陀螺漂移精确估计方法   总被引:1,自引:0,他引:1  
为了减小方位陀螺漂移对单轴旋转捷联惯性导航系统(strapdown inertial navigation system, SINS)长时间定位精度影响,提出了一种方位陀螺漂移在线估计方法。对SINS误差参数进行分析,指出东向陀螺漂移和方位失准角精度决定方位陀螺漂移估计值精度。利用优化后的卡尔曼(Kalman)滤波器在线估计SINS失准角并进行补偿,在此基础上进一步使用Kalman滤波器估计惯性测量单元(inertial measurement unit, IMU)误差。进行了转台三轴摇摆和车载行进间验证实验,车载行进间验证实验中,IMU误差估计完成后转入到纯惯性导航,其12 h的定位误差为2.12n mile,系统定位精度满足中等精度单轴旋转SINS长时间导航需求。  相似文献   

15.
针对伴飞式干扰机编队对抗雷达网的应用背景,以组网雷达融合中心定位精度为目标函数,建立针对组网雷达系统的干扰资源优化分配模型。在此基础上充分利用突防过程的干扰机编队飞行航线信息,提出以“融合中心对航线各点定位精度的加权积分”为目标函数,建立基于突防过程的干扰资源优化分配模型。最后利用遗传算法求解上述模型的最优分配方法,并给出具体的求解步骤。仿真结果表明,该分配模型在干扰资源任务配置问题上具有很好的应用性,对提高干扰机编队的整体干扰效果有一定的可行性。  相似文献   

16.
针对无人机姿态角误差与观测误差影响目标定位精度问题, 构建基于辅助信标的无人机协同目标跟踪模型, 提高了对目标的定位精度。提出基于辅助信标的姿态校正方法, 利用辅助信标的精确位置实时校正无人机的姿态角, 减小姿态角误差对定位精度的影响。根据双无人机的最优观测构型, 设计双无人机协同控制律, 得到无人机观测的优化轨迹, 以提高无人机对目标的观测质量, 最后采用容积卡尔曼滤波算法得到目标的状态估计。仿真结果表明该算法能有效减小无人机姿态角误差和观测误差对目标定位的影响, 提高目标跟踪精度, 具有一定的工程应用价值。  相似文献   

17.
为提高视觉-惯性导航系统在弱纹理环境下的鲁棒性和精度, 结合特征点法精度高和光流法速度快的特点以及惯性信息, 提出一种多尺度均匀化光流融合特征点法的视觉-惯性同时定位与地图(simultaneous localization and mapping, SLAM)构建方法。首先, 改进快速特征点提取和描述(oriented fast and rotated brief, ORB)特征提取过程, 采用多尺度网格化的方法提取ORB特征点并利用四叉树均匀分配特征点, 提高特征分布离散性。其次, 在帧间采用LK(Lucas and Kanade)光流法追踪特征点进行帧间的数据关联, 在关键帧对特征点进行描述子的计算和匹配从而实现关键帧间的数据关联, 保证算法速度的同时提高定位精度和鲁棒性。最后, 基于光流法建立的数据关联得到的初始位姿为后端优化提供初始值, 整合ORB特征点重投影误差、惯性测量单元(inertial measurement unit, IMU)预积分误差以及滑动窗口先验误差构建最小化目标函数采用滑动窗口非线性优化进行求解。实验表明, 所提方法相比单目视觉惯性系统具有更高的定位精度和鲁棒性, 定位精度平均提升16.7%。  相似文献   

18.
为了提高室内三维空间的定位精度,提出了一种基于联合到达时间差与到达角度(time difference of arrival/angle of arrival,TDOA/AOA)信息的混合定位算法。由于构建的目标函数具有非凸性,采用传统定位算法在目标函数求解过程中会出现局部最优解的问题。因此,针对该问题,将目标函数转成二次约束二次规划问题,通过引入半定松弛(semi-definite relaxation,SDR)方法将目标函数转换为二阶锥规划(second order cone programming, SOCP)问题,寻找全局最优解。其次,针对SOCP无法对凸包外的目标进行有效定位的问题,在该算法的基础上引入了惩罚项,使松弛后的约束条件进一步逼近原始约束条件,解决了定位过程中的凸包问题。数值仿真结果表明:在10 m×10 m×3 m的三维定位空间内,选取40×40个测试点,平均定位误差为1.39 cm,可实现室内三维空间高精度定位。与传统的混合定位算法相比,均能够获得较高的定位精度。  相似文献   

19.
针对多自主水下航行器协同定位系统中从艇的数据融合问题,首先建立了协同定位系统的数学模型,然后分析了速度误差及航向误差对从艇定位误差的影响,同时设计了协同定位及误差估计的因子图模型。接着,提出了基于高斯噪声的协同定位及误差估计算法,利用均值和方差在因子图各节点间传递完成对从艇位置、速度误差和航向误差的估计。为了验证算法的有效性,通过仿真实验和实船试验的离线数据对协同定位及误差估计算法进行验证。结果表明,所提算法可以有效降低从艇的定位误差,在从艇自主定位时尤其明显,大幅提高了从艇的导航定位能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号