首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
为研究高速公路交织区入口匝道车辆汇入主线的换道行为,基于方差异质性随机参数模型构建了车辆汇入换道模型,先从NGSIM数据集中提取7个在统计上显著且对换道行为有影响的解释变量,然后将其引入方差异质性随机参数模型探索潜在异质性,计算各变量平均边际效应量化对换道行为的影响,最后提出了“个体样本精度”指标对模型进行比较。研究结果表明:汇入车辆与目标车道领车的车头间距、目标车道领车宽度、辅助车道领车速度对换道行为产生了显著的影响,且汇入车辆在辅助车道上的纵向位置显著影响汇入车辆与目标车道领车的车头间距,方差异质性随机参数模型比未考虑方差异质性的随机参数模型和二元Logit模型具有更高的拟合优度和模型精度,能够更好地解释车辆汇入行为中的潜在异质性。本文的研究成果可应用于自动驾驶辅助系统和交通流仿真软件中,对阐明车道变换行为的机理有一定的参考价值。  相似文献   

2.
为了进一步提高信号交叉口饱和流率的估算精度,在现有的饱和流率模型基础上,提出一种考虑因素之间交互影响的饱和流率修正方法.以分析大车比例与车道宽度2个因素间的交互影响为目标,基于北京市22个信号交叉口35条直行车道实测数据,利用双因素方差分析法对因素间的交互作用进行检验,借助多元线性回归方法构建考虑交互作用后的综合修正系数模型,并通过新采集的北京市3个交叉口6条直行车道实测数据对提出的模型进行适用性分析.结果表明,考虑交互作用的饱和流率修正模型平均误差均小于15%,明显优于HCM2016模型的31.50%与GB50647—2011模型的28.49%;增加交互项(误差分别为11.68%、11.67%)的模型精度高于无交互项(误差为12.52%)的模型.交互项形式的差异对模型性能影响较小.大车比例与车道宽度对饱和流率有交互影响,考虑交互影响后饱和流率修正模型精度显著提升,有助于模型进一步本地化.  相似文献   

3.
为满足自适应巡航系统跟车模式下的舒适性需求并且兼顾车辆安全性,基于模型预测控制原理提出一种多目标鲁棒跟车控制算法.建立考虑前车加速度干扰的自适应巡航系统车间纵向运动学模型,该模型可全面反映系统的动态演化规律,提高模型的精度和可靠性;针对自适应巡航系统需求进行目标分析,设计一种考虑舒适性和安全性的多目标模型预测控制算法;针对模型预测控制算法鲁棒性较差的问题,引入修正项反馈,提高控制系统鲁棒性,采用向量约束管理法解决模型预测控制算法硬约束造成的控制系统无优化解问题.仿真结果表明:该算法使跟车时车辆加速度及冲击度保持在舒适性范围,同时车间距始终大于最小安全距离,兼顾了舒适性和安全性要求,实现了自适应巡航控制系统跟车目的.  相似文献   

4.
势能场影响区域车辆交互速度变化模型   总被引:1,自引:0,他引:1  
为定量分析交通流中车辆间的交互影响,开展了主干路车辆交互速度变化模型研究,通过类比势能场理论中的引力和斥力,界定了势能场影响区域的概念,将目标车运行时与周围车辆的吸引和排斥作用归结为势能场影响区域交互面积的变化,提出考虑势能场影响区域的车辆交互分析方法,建立了目标车速度变化量与势能场影响区域交互面积的线性模型. 采用P3-DT北斗高精度定位测向机采集车辆坐标和速度,标定模型参数. 用该模型计算目标车速度变化量,并与实测数据进行对比. 结果表明:模型计算值与实际值之间的误差小于15%,车道变换时间越短,目标车与目标车道后方车辆间的交互作用越明显,后车的减速操作越迅速,验证了模型的有效性. 该模型将传统微观交通流分析中的车速与车辆间距两大因素归一为势能场影响区域交互面积,可为微观交通流中的多车交互研究提供方法,并为自动驾驶车辆提供速度控制策略.  相似文献   

5.
为研究横向加速度在双车道公路小半径曲线段上的变化特性以及与横向偏移量的关系,运用驾驶模拟器进行小半径曲线段上车辆行驶的仿真实验,获得车辆的横向加速度与横向偏移量.针对双车道公路小半径曲线段横向力作用大的特点,对曲线段上的横向加速度变化特性进行分析,通过Matlab软件建立车辆横向加速度预测模型、横向加速度与横向偏移量相关性的数学模型.结果表明,随着车速的增加,横向加速度增大,在圆缓(YH)点附近横向加速度与横向偏移量达最大值,圆曲线段的横向加速度与横向偏移量成对数正相关关系.研究成果为评价双车道公路小半径曲线段行车安全性提供了理论支持.  相似文献   

6.
由于驾驶技能、生理极限等原因,人工驾驶员在转向操作中存在响应迟滞、动作超调等问题,控制性能优良的自动驾驶车辆可以改善上述问题。设计了一种基于模型预测控制(MPC)的自动驾驶车辆横向路径跟踪控制器。基于预瞄跟随理论建立了最优侧向加速度的驾驶员转向模型,以分析驾驶员方向盘操作中预瞄时间和车速对车辆跟踪参考路径的影响。基于模型预测控制算法设计了车辆横向路径跟踪控制器,利用反馈校正机制改进车辆预测模型,以处理参数不完全确定和外部干扰对模型精度带来的影响;采用松弛因子对目标函数进行处理,以保证目标函数具有可行解;进一步地,将所设计的模型预测控制器每一步的优化求解转化为带约束的二次规划问题,利用模型预测控制滚动优化的特点,求解跟踪参考路径所需的方向盘转角,作用于自动驾驶车辆。实验结果表明:预瞄时间和车速对驾驶员操控车辆跟踪参考轨迹的影响较大,MPC控制器下的车辆实际行驶轨迹与参考轨迹之间的最大横向偏差为0.085 m,小于熟练驾驶员操控的车辆,同时,MPC控制器下的车辆转向起始时刻相对于熟练驾驶员操控的车辆提前0.89 s。  相似文献   

7.
研究了车辆偏航预警时道路坐标系与图像坐标系转换精度不稳定问题.对CCD前方道路图像进行了ROI划分,利用自适应动态阈值分割了车道线区域像素,通过Sobel算子提取车道线梯度边缘进行了双重阈值约束,运用Hough变换实现了车道线的直线拟合.根据成像射影原理推导出车道线左右水平倾角与车辆横向偏航率ε之间的关系,给出了基于车道线图像识别的车辆偏航预警策略,建立了车辆偏航预警模型.道路试验表明:当通过车道线图像识别进行车辆偏航预警时,车辆偏航率的平均相对误差为5.7%,满足车辆偏航预警准确性与实时性要求,有效实现了复杂道路环境中车道线识别与偏航预警.  相似文献   

8.
在车辆集结、消散、超车、堵塞等过程中经常伴随着车道变换行为.与其他驾驶行为相比,车道变换过程中将产生冲突点,增加了与其它车辆发生碰撞的可能性,因此对交通安全的影响极大.选择性车道变换行为是驾驶员在不同车道行驶满意程度的选择结果,其需求产生的过程可以用Logit理论进行描述.通过引入Logit模型,建立了基于效用选择的选择性车道变换模型,并应用实测数据及近景摄影测量原理对模型进行标定.最后,基于Open GL在VC.net环境下编写仿真程序对所建选择性车道变换模型的有效性进行了验证.仿真结果表明本文建立并标定的车道变换模型是合理的.  相似文献   

9.
针对时空维度特征影响自动驾驶车辆轨迹精度的问题,提出基于时空融合的多头注意力(TSMHA)车辆轨迹预测模型,对于空间与时间2个维度的特征信息,分别使用多头注意力机制提取车辆空间交互感知与时间运动模式.为了获得互补特征,并除去特征数据中的冗余,将处理后的时空特征信息传输至门控特征融合模型进行特征融合.使用基于长短期记忆(LSTM)的编解码器结构,考虑编码与解码2个过程中轨迹之间潜在的相互作用,循环生成目标车辆未来预测轨迹.在训练过程中使用L2损失函数,以此降低预测轨迹与真实轨迹的差值.实验表明,与对比算法模型相比,在直线高速公路、城市十字路口、环岛场景下,本研究所提出的模型的精度分别提高了3.95%、 15.64%、31.40%.  相似文献   

10.
为直观地反映环形交叉口的车辆拥挤程度,建立了一种基于OD分布的环形交叉口车辆行程时间估计模型。首先针对环形交叉口的特殊性,运用几何知识,建立了无干扰状态下环形交叉口几何尺寸与车辆行程时间的关系模型;其次运用概率统计方法,分析车辆在环形交叉口的车道选择特性,建立了特定OD下的车辆换道次数模型,从而得到车辆由于换道引起的延误时间;然后通过实测数据,分析了交织区断面流量与车辆排队等待时间的关系,建立了车辆在交织区入口处的等待时间模型;最后,运用实测数据对模型进行了参数标定和检验,结果表明,本文模型预测误差在10%以内,满足精度要求。  相似文献   

11.
车辆在执行换道行为时,由于受到较多环境因素影响,难以准确进行换道识别和预测. 为解决这一问题,提出一种基于梯度提升决策树(GBDT)进行特征变换的融合换道决策模型,以仿真驾驶员在高速公路上自由换道时的决策行为. 采用主体车辆与目标车道后车的碰撞时间 tlag 及车辆周围交通状态变量进行车辆换道行为的建模分析,在NGSIM数据集上对建立的融合换道决策模型进行参数标定和模型测试. 实验结果表明:融合换道决策模型以95.45%的预测准确率超越支持向量机、随机森林和GBDT等单一的换道决策模型,获得了最突出的表现. 变量分析结果表明:新引入的换道决策变量 tlag 对车辆换道行为具有重要影响. 提出的融合换道决策模型能够进一步减少因换道决策误判而导致的交通事故.  相似文献   

12.
城市快速路匝道合流区车速限制研究   总被引:2,自引:1,他引:1  
为了明晰城市快速路匝道合流区交通运行最有利的车速限制策略,基于匝道合流区限速原则,采用快速路实测数据和数理统计分析方法,研究匝道车辆车速分布、流量与车速关系以及车道位置、车型和车道宽度对匝道合流区的合理限速值的影响.分析表明:车速随车道位置由内至外依次降低,车道宽度虽与车速呈正比,但影响并不大,车速主要受流量影响,与其呈正比.城市快速路匝道合流区与基本路段的车速特征差异较大,应分别制定限速策略,匝道合流区限速值应根据车道位置、车道宽度和流量情况综合进行考虑.  相似文献   

13.
为了探究快速路出口匝道与下游交叉口衔接段的驾驶行为与安全特性,结合实测换道车辆轨迹数据,分析匝道衔接段车辆轨迹特性和换道位置特性. 利用交通冲突技术,以后侵入时间(PET)为指标对车辆换道风险展开分析,建立有序概率模型识别冲突严重程度的影响因素. 结果显示,用Lorentz分布模型拟合车辆换道位置效果较好,换道类型与跨越车道数对车辆换道位置有显著影响,在强制换道与跨越多车道时换道位置更靠近衔接段始端;相较于普通衔接段,匝道衔接段行车风险更高,主要冲突类型为交叉冲突;衔接段饱和度、换道位置、交叉冲突、强制换道以及违章换道与冲突严重程度显著相关. 匝道衔接段释放车辆的车头时距稳定性差,交织区排队车辆的释放受换道干扰严重.  相似文献   

14.
加速车道长度计算模型及其影响因素   总被引:1,自引:1,他引:0  
在分析合流过程中匝道车辆运行特点以及合流影响因素的基础上,提出用相对车头时距的概念刻画主线车流与合流车辆运行速度以及主线流量对合流的影响,得到了新的加速车道长度计算模型。并对模型及其影响因素进行了分析.  相似文献   

15.
快速准确地进行换道路径规划、有效跟踪期望路径以及换道过程中保持车辆的操纵稳定性,是保障智能汽车主动安全的核心技术.针对智能汽车主动换道过程中的路径规划问题,引入中转位置,提出基于双五次多项式的路径规划策略,以提高换道路径的平滑性,保证车辆换道安全性,满足换道实时性要求.对主动换道场景进行分析,确定换道初始及目标位置;基于车辆换道过程中的临界碰撞点,提出双五次多项式换道路径规划策略;建立联合仿真模型,针对不同道路状态进行主动换道仿真试验.结果表明:由于引入了中转点,利用双五次多项式规划方法得到的换道路径在临界碰撞状态前有更明显的侧向位移,能避开前方障碍车保证了换道安全性;换道中转位置处车辆最大侧向加速度不超过2 m/s2,保证了换道过程中车辆操纵稳定性;在干燥路面与湿润路面工况下,换道所需纵向安全距离减小20 m左右,保障了换道过程的纵向碰撞的安全性.研究结果可以为智能汽车主动换道路径规划提供理论及实践依据.  相似文献   

16.
为探究现有高速公路合流区对自动驾驶车辆的适应性,分析现有高速公路合流区加速车道长度和通视三角区角度对自动驾驶交通流的影响规律,并与传统交通流进行对比。依据自动驾驶车辆在感知、跟驰和换道行为以及与周围车辆的协作方面更迅速安全等特点,改进了Krauss跟驰模型和LC2013换道模型以适应自动驾驶车辆特征。依据车辆换道可接受间隙建立车辆跟驰间距计算公式,在满足换道安全的基础上对跟驰模型参数进行改进。结果表明:在现有的高速公路合流区平面设计参数条件下,自动驾驶交通流的安全性、效率及稳定性均优于传统交通流,与传统交通流相比,自动驾驶交通流冲突数减少了100%,平均延误降低了60%~71%,平均车速提高了近20%且更稳定;在不同平面设计参数下,自动驾驶车辆的冲突数均为0,平均延误保持在0.65 s左右,平均车速稳定在33~34 m/s。现有的高速公路合流区平面设计参数在安全、效率和稳定性方面均能较好地适应自动驾驶车辆,且参数的取值对自动驾驶车辆影响不大。  相似文献   

17.
高速公路汽车辅助驾驶安全换道模型   总被引:2,自引:1,他引:1  
为解决高速公路行车危险状态下驾驶员有意识换道过程中发生的车辆碰撞等交通事故问题,在前期研究车道偏离预警的基础上.针对确立的典型换道场景,建立了更加符合实际的基于换道过程中车辆加速行为的安全换道模型,并借助Matlab软件开发的仿真程序对建立的模型进行了仿真分析。结果表明,本文建立的模型具有较好的实用性,可为进一步建立车辆安全换道辅助系统奠定基础。  相似文献   

18.
提出了一个面向高速道路交通车辆违规行为移动执法智能检测模型。系统模型分为车道线检测、车辆检测与跟踪、逆透视变换及几何量算、面向车道定位的地图精细匹配等4个子模块。该系统模型算法在实际高速公路环境中进行了车辆违规行为检测,以及车道线检测、车辆目标及跟踪等专项测试以表征其对车辆违规行为的检测能力。测试结果表明,该系统模型具备在一定的复杂交通环境中车辆违规行为辨识能力。相关专项测试表明,该模型可以快速及准确地检测记录违规车辆。  相似文献   

19.
高速公路施工区合流路段交通冲突模型   总被引:1,自引:0,他引:1  
为了对高速公路施工区合流路段交通冲突进行微观分析以及探索交通冲突技术在无人驾驶领域的应用,采集12个交通微观信息变量数据作为训练集,结合先验知识,建立了贝叶斯网络模型并采用交叉验证方式评估模型精确度. 结果表明:大车作为冲突主体车辆会导致交通冲突概率和冲突严重性上升;与冲突两车的前后相邻车辆会对两车的冲突有一定影响;当车辆采取超车行为时,会提升车辆发生交通冲突的概率;匝道合流路段发生交通冲突的概率和严重性较转幅路段更高. 采用建立的贝叶斯网络交通冲突模型对驾驶策略进行评估并提出冲突规避措施,如分流大车;在特定路段采取管制措施禁止超车,限制单车道长度,设置车距确认设施等.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号