首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 350 毫秒
1.
采用基于Kriging模型的优化设计方法开展了风力机专用翼型的优化设计工作.除了在全湍流条件下进行设计之外,同时还在气动优化设计中耦合层流湍流转捩预测,将翼型上下表面的转捩点作为约束条件,采用基于Kriging模型的优化设计方法实现了考虑转捩影响的风力机翼型优化设计.风力机翼型最大升阻比优化结果表明:在两种条件下,优化得到的翼型气动性能均得到较大提高,均具有较好的粗糙度不敏感性,但相比而言,考虑转捩影响的风力机翼型优化设计能在更加真实的环境下获得气动性能更好的优化设计结果.  相似文献   

2.
针对风力机翼型泛函集成理论在中等厚度翼型(最大相对厚度约25%)优化设计过程中其控制参数难以界定的缺点,首次提出翼型集成理论与B样条曲线相结合的风力机翼型型线优化设计方法。建立翼型优化数学模型,采用改进的多目标粒子群算法与RFOIL软件耦合求解气动参数进行翼型优化设计。优化得到最大相对厚度为25%的新翼型CQU-250,该翼型具有良好的结构兼容性;并将该翼型与同等厚度的风力机翼型DU91-W2-250进行气动特性对比分析,分析结果表明新翼型在主要工作攻角范围内,光滑和粗糙两种条件下的升力系数均更高,升阻比更大,具有更高的设计与非设计工况。相比传统翼型,其气动性能明显提高,从而验证了该方法的可行性。  相似文献   

3.
在风力机翼型型线形状优化设计中,提出了一种新的基于Joukowski保角变换的通用翼型型线表征形式.建立了翼型多目标形状优化设计的数学模型,应用改进的多目标遗传优化算法,设计得到了4种性能优越的风力机专用翼型.详细分析了WT180翼型的空气动力学特性,该翼型在设计工况和非设计工况下都具有良好的气动性能,具有较低的前缘粗糙度敏感性.与目前风力机常用翼型相比,新翼型在主要工作攻角范围内,光滑和粗糙条件下的升力系数更高,升阻比更大,其气动性能相比传统翼型表现出明显的提高.  相似文献   

4.
风力机叶片翼型优化设计   总被引:1,自引:0,他引:1  
为设计出气动性能优异的风力机翼型,运用CST参数化方法表述翼型外形特征以控制翼型型线,利用自适应遗传算法耦合XFOIL软件的翼型优化方法,以翼型NACA 63-215为优化算例,在设计工况下寻优,得到一种升力系数、阻力系数、升阻比、力矩等气动特性均较NACA 63-215更优的翼型,证明了该优化方法的可行性,为风力机翼型优化设计提供了参考。  相似文献   

5.
将风力机翼型气动性能与气动噪声同时作为翼型优化目标,建立了低速翼型的多目标优化设计方法,包括利用Bezier曲线对翼型几何结构进行参数化建模,使用位势流动与边界层迭代(IBL)的流动分析方法计算翼型流场,采用Brooks-Pope-Marcolini翼型自噪声半经验模型预测气动噪声,利用Powell优化方法求得优化翼型.以naca0012翼型为例,对多种目标权重分配方案的优化目标进行设计和计算.结果表明:与原始翼型相比,在设计工况下,优化翼型的升阻比提高,噪声降低,可以获得更好的气动性能和声学性能.  相似文献   

6.
为提升垂直轴风力机翼型综合气动性能,建立针对多运行工况的翼型优化设计方法。采用CST参数化方法表征翼型几何外形,通过优化的拉丁超立方抽样方法进行空间采样,利用CFD方法计算翼型气动力,并建立径向基函数神经网络代理模型,以翼型小攻角下升力和失速攻角下升阻比最优为设计目标,采用多目标遗传算法在代理模型上进行寻优,获得适用于垂直轴风力机的专用翼型以提高其在不同尖速比下的旋转力矩。对风力机常用翼型NACA0018进行优化,结果表明:以翼型失速攻角和最大升阻比攻角为优化目标,不仅提高了单翼型的升力系数与升阻比,而且将优化翼型应用于垂直轴风力机时还可提升使整机力矩系数。  相似文献   

7.
针对神经网络模型可以基于现有数据快速准确地预测风力机翼型的气动性能,但大量学习样本的构建需要较高的时间成本的问题,建立基于小样本集的风力机翼型神经网络模型,提出了多约束条件下的翼型气动性能优化设计方法,解决了训练数据过少所造成的学习不充分问题。基于建立的优化设计模型,应用粒子群算法完成了NACA4415翼型的优化设计,将新翼型与原始翼型进行气动特性对比分析。结果表明:新翼型在主要工作攻角范围内最大升力系数提高了6.96%,最大升阻比提高了7.37%,气动性能明显改善;该方法的优化效率远远高于传统方法,从而验证了该方法的可行性。  相似文献   

8.
基于iSIGHT的风力机翼型优化设计平台   总被引:1,自引:0,他引:1  
杜刚  陈江  曹人靖 《太阳能学报》2010,31(7):891-895
以实际风力机翼型族的优化设计为研究对象,通过在iSIGHT软件上集成计算流体力学(CFD)软件Fluent、数值求解软件Matlab以及自编变形网格生成软件,建立了针对风力机专用翼型的优化设计平台;该平台使用反设计优化方法,可以通过改变初始翼型的几何形状,进行流体力学分析,求解气动性能敏感导数的迭代过程,得到符合特定性能要求的翼型;通过RAE2822和S825翼型性能为目标的优化过程验证了该平台的有效性和准确性。该平台可用于实际风力机翼型族的优化设计。  相似文献   

9.
为分析并量化不确定湍流对低雷诺数风力机翼型气动性能的影响,以风力机翼型S809为研究对象,基于非嵌入式概率配置点法和修正转捩Transition SST模型,分析湍流强度对低雷诺数翼型升阻气动特性、层流分离和失速分离的影响规律,并量化随机湍流不确定性对翼型气动性能的影响。结果表明,湍流强度由0.2%增大至25%,翼型最大升阻比降低51.8%,湍流作用下层流分离泡消失,失速分离延迟;湍流强度标准差由10%增加至35%,翼型升阻比标准差最大增幅为14.43%。  相似文献   

10.
基于翼型粗糙容忍度,采用三维建模方法模拟分布式粗糙元,代替传统粗糙带,并利用3D打印技术打印粗糙前缘模型。通过风洞测试,得到前缘粗糙的18%厚度风力机翼型气动性能数据。测试结果表明,随着雷诺数的增加,翼型的升力系数增加。前缘粗糙会导致翼型的最大升力系数减小,阻力系数上升,最大升阻比减小,失速攻角提前。同时,相同粗糙水平下,相较于前缘凸起,前缘凹坑粗糙方式对风力机翼型气动性能影响较小。  相似文献   

11.
叶片是风力机最重要的组成部分,在不同的风能资源情况下,翼型的选择对垂直轴风力机气动特性有着重要的影响。文章分别以NACA0018翼型(对称翼型)和NACA4418翼型(非对称翼型)建立3叶片H型垂直轴风力机二维仿真模型。应用数值模拟的研究方法,从功率系数、单个叶片切向力系数等方面比较两种风力机模型在不同叶尖速比下的气动特性,并采用风洞实验数据验证了流场计算的准确性。CFD计算结果表明:在低叶尖速比下,NACA4418翼型风力机气动特性优于NACA0018翼型风力机,适用于低风速区域;在高叶尖速比下,NACA0018翼型风力机气动特性较好,适用于高风速地区。而且在高叶尖速比时,NACA0018翼型在上风区时,切向力系数平均值要高于NACA4418翼型,在下风区时,NACA418翼型切向力系数平均值高。该研究可为小型垂直轴风力机翼型的选择提供参考。  相似文献   

12.
针对目前风力机大厚度翼型设计参数空间有限、优化设计过程中气动力预测不准等问题,利用B样条函数表征通用翼型廓线,编制程序集成耦合翼型设计模块、任意翼型自适应网格模块、CFD流场计算模块、遗传算法优化模块,提出了基于CFD技术与遗传算法的风力机叶片大厚度翼型优化设计方法,并对比分析优化新翼型与DU97-W-300翼型的几何特性与气动性能。结果表明,优化方法设计的新翼型在主要攻角范围内具有较高的气动性能,在雷诺数为3.0×106的情况下,其升力系数、升阻比分别提高了13.555%、38.588%。该翼型优化设计方法为风力机大厚度通用翼型的设计与应用提供参考。  相似文献   

13.
Wind turbines operate under various wind conditions in which turbulence virtually always exists. Therefore, unsteady wind turbine simulation methods to estimate wind loading in turbulent inflow conditions are very important for developing optimally designed wind turbines. Several methods have been developed for this purpose and are usually based on the blade element momentum theory (BEMT), which is used for calculation of the wind loading on turbine blades. The local shear flow effect induced by turbulence, however, is not explicitly considered in the popular BEMT-based simulations. Extreme situations can occur in a large-scale wind farm where the inflow field of a wind turbine may contain strong tip vortices generated from upstream turbines. In this study, the effects of idealized local shear flows around a two-dimensional airfoil, S809, on its aerodynamic characteristics were analyzed by CFD simulations. Various parameters including reference inflow velocity, shear rate, angle of attack, and cord length of the airfoil were examined. From the simulation results, several important characteristics were found. The shear rate in a flow causes some changes in the lift coefficient depending on its sign and magnitude, while the angle of attack does not have a distinguishable influence. The chord length and reference inflow also cause proportional and inversely proportional changes in the lift coefficient, respectively. Based on these observations, we adopted an analytic expression for the lift coefficient from the thin airfoil theory and proposed a lift correction model, which is easily applicable to the traditional load analysis procedure based on the BEMT.  相似文献   

14.
综合应用涡面元和RANS方法,研究DU93-W-210、DU91-W2-250及DU97-W-300这3种常用翼型经尾缘修型后尾缘厚度对粗糙敏感性的影响.在涡面元方法中采用设置固定转捩和在RANS方法中采用设置锯齿形边界条件的方式来模拟翼型前缘污染,研究发现前缘污染造成翼型吸力峰降低,引起翼型气动性能下降,然而随着尾缘...  相似文献   

15.
For rough wind turbine airfoil and its blunt trailing-edge modification, the aerodynamic performance has been numerically investigated to facilitate a greater understanding of the effects of the blunt trailing-edge modification on the aerodynamic performance enhancement of airfoil with sensitive roughness height. The S834 airfoil from National Renewable Energy Laboratory is used for the simulation. The lift and drag coefficients of S834 airfoil with smooth or rough surface are calculated by the k-ω SST turbulence model, and are compared with wind tunnel test results. The aerodynamic performance of airfoils with different roughness heights is studied to obtain the sensitive roughness heights of suction and pressure surfaces. The mathematical expression of the blunt trailing-edge airfoil profile is established using the coordinate's rotation combined with the zoom coefficient of coordinate. Then, the S834 airfoil with sensitive roughness height is modified to be symmetrical blunt trailing-edge modification, and the lift and drag coefficients and the lift-drag ratio are also calculated and analyzed. Results indicate that the sensitive roughness height of suction surface is 0.5 mm, and the pressure surface is insensitive to the roughness height. Through the blunt trailing-edge modification, the lift coefficient and the maximum lift-drag ratio obviously increase for rough airfoil, and the sensitivity of airfoil to roughness height is reduced. The research provides significant guidance for designing the wind turbine airfoil under conditions of rough blade.  相似文献   

16.
The designers of horizontal axis wind turbines and tidal current turbines are increasingly focusing their attention on the design of blade sections appropriate for specific applications. In modern large wind turbines, the blade tip is designed using a thin airfoil for high lift : drag ratio, and the root region is designed using a thick version of the same airfoil for structural support. A high lift to drag ratio is a generally accepted requirement; however, although a reduction in the drag coefficient directly contributes to a higher aerodynamic efficiency, an increase in the lift coefficient does not have a significant contribution to the torque, as it is only a small component of lift that increases the tangential force while the larger component increases the thrust, necessitating an optimization. An airfoil with a curvature close to the leading edge that contributes more to the rotation will be a good choice; however, it is still a challenge to design such an airfoil. The design of special purpose airfoils started with LS and SERI airfoils, which are followed by many series of airfoils, including the new CAS airfoils. After nearly two decades of extensive research, a number of airfoils are available; however, majority of them are thick airfoils as the strength is still a major concern. Many of these still show deterioration in performance with leading edge contamination. Similarly, a change in the freestream turbulence level affects the performance of the blade. A number of active and passive flow control devices have been proposed and tested to improve the performance of blades/turbines. The structural requirements for tidal current turbines tend to lead to thicker sections, particularly near the root, which will cause a higher drag coefficient. A bigger challenge in the design of blades for these turbines is to avoid cavitation (which also leads to thicker sections) and still obtain an acceptably high lift coefficient. Another challenge for the designers is to design blades that give consistent output at varying flow conditions with a simple control system. The performance of a rotating blade may be significantly different from a non‐rotating blade, which requires that the design process should continue till the blade is tested under different operating conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
定常吸气装置可有效提高垂直轴风力机气动性能,改善风轮流场结构及翼型动态失速特性。基于CFD方法对垂直轴风力机进行数值模拟,研究不同叶尖速比(TSR)下定常吸气对风力机气动及流场特性的影响,对比分析原始风力机及定常吸气作用下的风能利用率、整机转矩系数及涡量分布。结果表明:不同尖速比下定常吸气均可显著提高风力机气动性能,减小风轮载荷波动,降低最佳叶尖速比,提高风力机运行稳定性;叶尖速比为2.51时,风能利用系数增加34.69%;定常吸气削弱了风轮叶片间尾涡脱落的影响,抑制叶片前缘涡的形成,减缓了叶片的动态失速现象,对风轮流场有良好的改善效果。  相似文献   

18.
为分析齿形襟翼(SGF)尾缘对风力机翼型气动性能及噪声特性的影响,利用SST k-ω湍流模型对装设Gurney襟翼(GF)和SGF的NACA0018翼型进行数值模拟,研究齿高和齿宽对气动性能和静压分布的影响,并采用大涡模拟(LES)对气动性能最优的SGF进行噪声预估和涡结构分析。结果表明:SGF可有效提高翼型升力系数并延迟失速;SGF-0.8-6.7模型可使最大升阻比提高8.61%,失速攻角延迟3°,其在拓宽高升力区间、延迟失速等方面具有最优性能;SGF翼型上下翼面噪声无明显差异,平均声压级随攻角增大而提高;SGF-0.8-6.7模型的尾迹噪声随攻角增大呈现先增后减的变化趋势,随距离增加而降低;翼型辐射噪声呈典型偶极子状,GF噪声小攻角下降低,而大攻角下则增大,SGF在不同攻角下均降噪显著,最大降噪量达10.2 dB;SGF尾涡稳定有序,能耗及损失降低,由此使气动性能和噪声得以明显改善。  相似文献   

19.
This paper presents the design and validation of the high performance and low noise Chong Qing University and Technical University of Denmark LN1 (CQU‐DTU‐LN1) series of airfoils for wind turbine applications. The new design method uses target characteristics of wind turbine airfoils in the design objective, such as airfoil lift coefficient, drag coefficient and lift‐drag ratio, and minimizes trailing edge noise as a constraint. To express airfoil shape, an analytical expression is used. One of the main advantages of the present design method is that it produces a highly smooth airfoil shape that can avoid the problem of curvature discontinuity. An airfoil profile with discontinuous curvature can produce a discontinuous pressure gradient (i.e., local flow acceleration or deceleration), which enhances flow separation and thus decreases the airfoil performance. By combining the design method with the blade element momentum theory, the viscous‐inviscid xfoil code and an airfoil self‐noise prediction model, an optimization algorithm has been developed for designing the high performance and low noise CQU‐DTU‐LN1 series of airfoils with targets of maximum power coefficient and low noise emission. To validate the airfoil design, CQU‐DTU‐LN118 airfoil has been tested experimentally in the acoustic wind tunnel located at the Virginia Polytechnic Institute and State University (Virginia Tech), USA. To show the superiority of the CQU‐DTU‐LN1 airfoils, comparisons on aerodynamic performance and noise emission between the CQU‐DTU‐LN118 airfoil and the National Advisory Committee for Aeronautics (NACA) 64618 airfoil, which is used in modern wind turbine blades, are carried out. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号