首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Four large-scale reinforced concrete beams were constructed and tested to investigate the effectiveness of external poststrengthening with prestressed fiber reinforced polymer (FRP) sheets. One of the beams served as a control specimen, another was strengthened with nonprestressed carbon FRP sheets, and the remaining two were strengthened with prestressed carbon FRP sheets. Presented is a method of prestressing multiple layers of the carbon fiber sheets during the application process and the experimental and analytical behavior of the beams under quasi-static loading. Comparisons are made between the control beam, the beam reinforced with nonprestressed carbon FRP sheets, and the beams strengthened with prestressed sheets. Serviceability and ultimate conditions are considered in the theoretical prediction of beam behavior, including the effects of multiple layer prestressing and external loading. The bonding of prestressed FRP sheets to the tensile face of concrete beams improved both the serviceability and the ultimate behavior of the reinforced concrete beams.  相似文献   

2.
This paper explores a new hybrid fiber-reinforced polymer (FRP) sheet/ductile anchor system for rehabilitation of reinforced concrete (RC) beams. The advantages of the proposed strengthening method is that it overcomes the problem of low ductility that is associated with brittle failure mode in conventional methods of strengthening beams using epoxy-bonded FRP sheets. The proposed system leads to a ductile failure mode by triggering yielding to occur in a steel anchor system (steel links) rather than by rupture or debonding of FRP sheets, which is sudden in nature. Four half-scale RC T-beams were tested under four-point bending. Three retrofitted beams were strengthened using one layer of carbon FRP sheet. The results of the two beams that were strengthened with the new hybrid FRP sheet/ductile anchor system were compared with the results from the beam strengthened with conventional FRP bonding method and the control beam. The results show the effectiveness of the proposed strengthening system in increasing flexural capacity and ductility of RC beams.  相似文献   

3.
The behavior of six 1:2.5-scale reinforced concrete cantilever wall specimens having an aspect ratio of 1.5, tested to failure and subsequently repaired and strengthened using fiber-reinforced polymer (FRP) sheets is investigated. Specimens were first repaired by removing heavily cracked concrete, lap splicing the fractured steel bars by welding new short bars, placing new hoops and horizontal web reinforcement, and finally casting nonshrink high-strength repair mortar. The specimens were then strengthened using FRP sheets and strips, with a view to increasing flexural as well as shear strength and ductility. In addition to different arrangements of steel and FRP reinforcement in the walls, a key parameter was the way carbon-FRP strips added for flexural strengthening were anchored; steel plates and steel angles were used to this effect. Steel plates were anchored using U-shaped glass-FRP (GFRP) strips or bonded metal anchors. Test results have shown that by using FRP reinforcement, the flexural and shear strength of the specimens can be increased. From the anchorage systems tested, metal plates combined with FRP strips appear to be quite efficient. The effectiveness of the bonded metal anchors used was generally less than that of the combination of plates and GFRP strips. In all cases, final failure of the FRP anchorage is brittle, but only occurs after the peak strength is attained and typically follows the fracture of steel reinforcement in critical areas, hence the overall behavior of the strengthened walls is moderately ductile.  相似文献   

4.
Improving the strength-to-ductility trade-off remains the prime driving force for the development of advanced high-strength steel. Traditionally research breakthroughs are focused on the microstructure and relative phase composition. Herein, laser hardening is applied to ductile ferritic steel to introduce straight and corrugated martensitic reinforcements, effectively generating architectured steel sheets. Tensile behavior of laser-architectured samples is studied both using finite-element method simulation and mechanical testing to reveal the effect of laser-induced corrugations on strength and necking strain. The results show that with the same reinforced volume fraction of 24%, an increase in corrugation height/period leads to a gain in necking strain with a loss in yield strength and ultimate tensile stress. This beneficial effect on necking strain is due to the corrugation unbending process which introduces so-called geometric work hardening during tension. Extended simulations are carried out on various corrugation heights/periods and the evolution trends of ultimate tensile strength and necking change with different reinforced volumes. This study proposes a perspective on corrugation-reinforced architectured materials. Corrugation parameters can be chosen to tailor the mechanical behavior of laser-architectured materials.  相似文献   

5.
This paper presents the peeling behavior and spalling resistant effect of bidirectional fiber reinforced polymer (FRP) sheets externally bonded to concrete surfaces. Experimental investigations are carried out through a series of newly designed punching-peeling tests. A wide range of variables, such as FRP sheet layers and fiber direction, plate constraint, concrete strength, adhesives, bond length of FRP sheets, diameter of indenter, and types of fibers, are considered in the experimental investigation. Theoretical study is also conducted for the specimens. Interfacial fracture energy is calculated analytically using a membrane-peeling method. It is realized that only two material parameters, i.e., the interfacial fracture energy of the FRP-concrete interface and the tensile stiffness of FRP sheets, are necessary to represent the interfacial spalling resistant behavior. Finally, the theoretical results are validated by comparing with experimental results. Comparison of theoretical to experimental results shows that the proposed theoretical model is satisfactory in reasonably and accurately predicting the peeling behavior and spalling resistant capacity of bidirectional FRP sheets bonded to concrete surface.  相似文献   

6.
Strengthening of concrete structures using fiber-reinforced polymer (FRP) systems has become a widely accepted technology in the construction industry over the past decade. Externally bonded FRP sheets are proven to be a feasible alternative to traditional methods for strengthening and stiffening deficient reinforced or prestressed concrete members. However, the delamination of FRP sheets from the concrete surface poses major concerns, as it usually leads to a brittle member failure. This paper reports on the development of FRP anchors to overcome delamination problems encountered in surface bonded FRP sheets. An experimental investigation was conducted on the performance of carbon FRP anchors that were embedded in normal- and high-strength concrete test specimens. A total of 81 anchors were tested under monotonic uniaxial loading. Test parameters included the length, diameter, and angle of inclination of the anchors and the compressive strength of the concrete. The experimental results indicate that FRP anchors can be designed to achieve high pullout capacities and hence can be used effectively to prevent or delay the delamination of externally bonded FRP sheets. The results also indicate that the diameter, length, and the angle of inclination of the anchors have a significant influence on the pullout capacity of FRP anchors.  相似文献   

7.
Twinning-induced plasticity (TWIP) steels are a highly promising group of steels for the production of complex structural components in cold forming operations for car body manufacturing. In this work, the effect of cold rolling strain on the microstructure, mechanical properties and fracture characteristics of a TWIP steel sheet used for automobile body structure was studied by means of optical microscopy, scanning electron microscopy, electron back-scattered diffraction technique, microhardness measurement, tensile test and fractography. TWIP steel sheets were cold rolled with reductions of 0, 15 and 30%. An increase of the cold rolling strain led to an increase of deformation twinning activity in certain favourably oriented grains and resulted in significant increase in ultimate tensile strength and hardness of TWIP steel. However, the ductility of TWIP steel significantly decreased with increasing degree of cold rolling strain. The increase in the ultimate tensile strength was almost linear with the increase in cold rolling strain. After cold rolling reduction of 30%, the ultimate tensile strength increased by approximately 50%, whereas the elongation decreased by approximately 85%. The size and depth of the dimples in the fracture surface decreased with the increase of the twin boundaries at 30% cold rolling strain, leading to highly limited plasticity through the tensile testing.  相似文献   

8.
Carbon fiber-reinforced polymer (CFRP) sheets can be used to strengthen existing reinforced concrete members. However, debonding (separation of the CFRP sheet from the concrete surface) may occur at less than 50% of CFRP sheet’s tensile capacity, implying that half of the CFRP material is ineffective in increasing the strength of a concrete member. The use of carbon fiber anchors can increase the amount of tension carried in the CFRP sheets. Forty specimens were tested to develop initial design parameters of carbon fiber anchors. Tests showed that by providing anchors with a total cross-sectional area at least two times greater than that of the longitudinal sheet, it was possible to fracture the CFRP sheets. The best results were obtained using a greater number of smaller anchors. Further, surface preparation is unimportant when the CFRP sheets were well anchored and a 1:4 transition slope can manage any offsets in surface level. The general anchor design was then implemented on a series of long beams and demonstrated that the full CFRP sheet tensile capacity can be realized without incurring limitations due to debonding.  相似文献   

9.
Hydrogen embrittlement of high-strength steels was investigated by using slow strain rate test (SSRT) of circumferentially notched round bar specimens after hydrogen precharging. On top of that, cyclic corrosion tests (CCT) and outdoor exposure tests were conducted prior to SSRT to take into account the effect of hydrogen uptake under atmospheric corrosion for the evaluation of the susceptibility of high-strength steels. Our studies of hydrogen embrittle properties of high-strength steels with 1100 to 1500 MPa of tensile strength and a prototype ultrahigh-strength steel with 1760 MPa containing hydrogen traps using those methods are reviewed in this article. A power law relationship between notch tensile strength of hydrogen-precharged specimens and diffusible hydrogen content has been found. It has also been found that the local stress and the local hydrogen concentration are controlling factors of fracture. The results obtained by using SSRT after CCT and outdoor exposure test were in good agreement with the hydrogen embrittlement fracture property obtained by means of long-term exposure tests of bolts made of the high-strength steels.  相似文献   

10.
The objective of this paper is to study and compare the performance of concrete beams strengthened with carbon fiber sheets bonded with inorganic and organic resin matrices. The experimental study consisted of testing two groups of steel-reinforced concrete beams. The first group of beams was strengthened with carbon fiber sheets bonded with an organic matrix, and the second with carbon fiber sheets bonded with an inorganic matrix. The first group of beams was strengthened with 2, 3, and 4 layers of carbon fiber sheets, while the second group was strengthened with 2, 3, 4, and 5 layers of carbon fiber sheets. Strength, stiffness, ductility, deflection, failure pattern, and cracking of beams strengthened with the two systems were compared. Results showed that the inorganic matrix system is as effective in increasing strength and stiffness of reinforced concrete beams as the organic matrix. The failure mechanism of the inorganic system, however, seems more brittle. The failure of beams strengthened with inorganic matrix showed crack formation in the composite and a minimum buildup of strain along the interface of the composite and concrete. Analytical models were proposed to predict deflection and moment capacity of the strengthened beams. The experimental values compared well with those predicted by the analytical models.  相似文献   

11.
The quenching and partitioning (Q&P) process was experimentally investigated on the thermomechanical simulator (Gleeble3800). The microstructure and fracture mechanism of the sheets were investigated by means of TEM. It was found that the microstructure of quenched and partitioned steel consists of fine lath martensite and thin inter-lath austenite films. The optimum quenching temperature of producing the maximum amount of retained austenite after final quenching at room temperature was predicted by Matlab software package. It was found that the calculations by Matlab software can provide guidance for experimental processing design reliably. The volume fraction of retained austenite at room temperature was approximately 8%, which was measured easily by the software VC6.0++ programming. The results verified that quenched and partitioned steel possesses a good combination of strength and plasticity due to its fine microstructure. This steel exhibited high ultimate tensile strength (exceeding 1 000 MPa) and good elongation of 25%. The results showed that the fracture mechanism of the sheets is typical tough fracture under the condition of tensile failure.  相似文献   

12.
In recent years, a tremendous effort has been directed toward understanding and promoting the use of externally bonded fiber-reinforced polymer (FRP) composites to strengthen concrete structures. Despite this research effort, studies on the behavior of beams strengthened with FRP under fatigue loading are relatively few, especially with regard to its shear-strengthening aspect. This study aims to examine the fatigue performance of RC beams strengthened in shear using carbon FRP (CFRP) sheets. It involves six laboratory tests performed on full-size T-beams, where the following parameters are investigated: (1) the FRP ratio and (2) the internal transverse-steel reinforcement ratio. The major finding of this study is that specimens strengthened with one layer of CFRP survived 5 million cycles, some of them with no apparent signs of damage, demonstrating thereby the effectiveness of FRP strengthening systems on extending the fatigue life of structures. Specimens strengthened with two layers of CFRP failed in fatigue well below 5 million cycles. The failure mode observed for these specimens was a combination of crushing of the concrete struts, local debonding of CFRP, and yielding of steel stirrups. This failure may be attributed to the higher load amplitude and also to the greater stiffness of the FRP which may have changed the stress distribution among the different components coming into play. Finally, comparison between the performance of specimens with transverse steel and without seems to indicate that the addition of transverse steel extends the fatigue life of RC beams.  相似文献   

13.
A multifunctional hybrid glass fiber-reinforced polymer (GFRP)/steel joint has been developed for the transfer of compression and shear forces in thermal insulation sections of concrete slab structures used in building construction. The new pultruded cellular GFRP element improves considerably the energy savings of buildings due to its low thermal conductivity. The quasi-static behavior of the GFRP element in insulating and load-transferring joints at the fixed support of cantilever beams was investigated. Two loading modes were investigated: a moment dominant mode and a shear dominant mode. Results show that the GFRP element is not critical at the ultimate limit state. Ductile failure occurs either in the concrete during yielding of the steel bars, or only in the steel bars that penetrate the hybrid GFRP/steel joint. In moment mode, the GFRP element only transfers the compressive forces from the bending moments. In shear mode, in addition to the moment transfer, about 43–63% of the shear forces are transferred in the element webs at ultimate limit state due to tilting of the element. The application proves that multifunctionality can lead to competitive solutions for GFRP composites used in load-carrying components and can compensate for the relatively high material cost.  相似文献   

14.
Hot stamping is a technique to produce ultra high strength automobile components. The common material used in hot stamping process is coated and/or uncoated 22MnB5 boron alloyed steel. Ferritic‐pearlitic microstructure in as‐delivered sheets is transformed to fully lath martensitic after hot stamping. In the present research, hot stamping under water or nitrogen cooling media was investigated using different boron alloyed steel grades. Microstructural analyses, linear and surface hardness profiling as well as tensile tests of hot stamped samples were performed. Various microstructures of fully bainitic and/or fully martensitic were produced. The resulting microstructures provided yield strengths of 650–1370 MPa and tensile strengths of 850–2000 MPa. There is an optimum carbon equivalent content for which the highest formability index value, UTS × A25, is achieved. Using a nitrogen cooled punch resulted in higher yield strength without significant changes in ultimate tensile strength. It is concluded that a wide range of B‐bearing steels having an extended carbon equivalent range with an acceptable formability index value can be used by increasing the cooling rate in the die assembly.  相似文献   

15.
A method to utilize fiber composites for rapid repair of earthquake damaged flared columns was developed. Two 0.4-scale reinforced concrete columns that had been tested to failure in previous research were used. Both columns had been subjected to slow cyclic loads and had failed due to low-cycle fatigue of the longitudinal bars. To repair the columns, the damaged concrete in and around the plastic hinge was removed and the steel bars were straightened. Low-shrinkage, high-strength concrete grout was placed in the column afterward. The broken longitudinal bars were not replaced. Rather, glass and carbon fiber reinforced polymer (FRP) sheets with fibers running in the axial direction of the column were added to provide flexural strength to the columns. Additionally, glass FRP sheets with horizontal fibers were attached on the column to provide confinement and shear strength. Cyclic tests of the repaired columns indicated that the method to restore the strength was effective. Analysis using conventional constitutive relationships led to a close estimate of the lateral load response of the models.  相似文献   

16.
For high-strength steel sheets, a new concept has become necessary,viz, the relation between strength and formability. When the relation between tensile strength and elongation is appraised for ranking in terms of the strengthening mechanism, it is found that the substitutional solid-solution hardening type is excellent and the precipitation hardening type is inferior. In batch annealing, the phosphorus-added aluminum-killed steel sheets are representative of the former type having excellent formability as indicated by a highr values despite their tensile strength of 450 N/mm2. The titanium-added aluminum-killed steel sheets, which are representative of the latter type, have a tensile strength of 600 N/mm2 and a relatively highr value. Continuous annealing of the highstrength steel sheets of the same chemical composition causes higher yield stresses and combinations of yield stress and elongation. Alternatively with continuous annealing the same level of strength can be achieved with smaller additions of alloying elements than with batch annealing. An additional advantage of continuous annealing is the uniformity of properties along the length of the coil. The rapid cooling possible after continuous annealing allows production of high strength steel sheets having excellent mechanical properties that are unobtainable in the batched annealed steels. For example, steel sheets of 0.4 pet Si and 1.4 pet Mn after continuous annealing, haven values and Erichsen values as higher than conventional low-carbon rimmed or capped steel sheets even while they have a tensile strengths of 550 N/mm2.  相似文献   

17.
The results of research initiated in the early 1980s led to the replacement of plasticity-based design guidelines for the load-carrying capacity of headed anchors embedded in concrete with those developed using fracture mechanics. While provisions are available in the design codes that account for the presence of tensile fields causing concrete cracking, no provisions are available for anchors embedded in prestressed concrete. This paper presents the results of linear elastic fracture mechanics (LEFM) analyses and of a preliminary experimental investigation of the progressive failure of headed anchors embedded in a concrete matrix under compressive or tensile prestress. The model predicts an increase (decrease) in load-carrying capacity and ductility with increasing compressive (tensile) prestress. It is shown that despite neglecting the dependence on size of concrete fracture toughness, LEFM predicts with remarkable accuracy the functional dependence of the ultimate capacity on prestress.  相似文献   

18.
This paper presents the results of an experimental investigation into the behavior of slender steel columns strengthened using high-modulus (313?GPa), carbon fiber-reinforced polymer (CFRP) plates. Eighteen slender hollow structural section square column specimens, 44×44×3.2?mm, were concentrically loaded to failure. The effectiveness of CFRP was evaluated for different slenderness ratios (kL/r), namely, 46, 70, and 93. The maximum increases in ultimate load ranged from 6 to 71% and axial stiffness ranged from 10 to 17%, respectively, depending on kL/r. As kL/r reduced, the effectiveness of CFRP plates also reduced, and failure mode changed from CFRP plate crushing after occurrence of overall buckling, to debonding prior to, or just at, buckling. A simplified analytical model is proposed to predict the ultimate axial load of FRP-strengthened slender steel columns, based on the ANSI/AISC 360-05 provisions, which were modified to account for the transformed section properties and a failure criteria of FRP derived from the experimental results. It was shown that for a given FRP reinforcement ratio, there is a critical kL/r at the low end, below which FRP may not enhance the strength of the column.  相似文献   

19.
The use of high-strength concrete (HSC) in seismically active regions poses a major concern because of the brittle nature of material. The confinement requirements for HSC columns may be prohibitively stringent when ordinary grade transverse steel reinforcement is used. An alternative to conventional confinement reinforcement is the use of fiber-reinforced polymer (FRP) tubes in the form of stay-in-place formwork which can fulfill multiple functions of: (1) formwork; (2) confinement reinforcement; and (3) protective shell against corrosion, weathering and chemical attacks. The use of stay-in-place FRP formwork is investigated as concrete confinement reinforcement for HSC and normal strength concrete (NSC) columns with circular cross sections. Large-scale specimens with 270?mm circular cross-sections and different concrete strengths were tested under constant axial compression and incrementally increasing lateral deformation reversals. FRP tubes were manufactured from carbon fiber sheets and epoxy resin. The results indicate that inelastic deformability of HSC and NSC columns can be improved significantly by using FRP tubes, beyond the performance level usually expected of comparable columns confined with conventional steel reinforcement.  相似文献   

20.
This paper presents the results of an experimental investigation undertaken to evaluate the punching shear capacity of interior slab–column connections, strengthened using flexible carbon fiber-reinforced polymer (CFRP) sheets. Sixteen square (670×670?mm) slab–column connections with different slab thicknesses (55 and 75 mm) and reinforcement ratios (1 and 1.5%) were tested. Twelve specimens were strengthened using CFRP sheets and the remaining four specimens were kept as controls. Without strengthening, all specimens were designed to experience punching shear failure. The CFRP sheets were bonded to the tension face of the specimens in two perpendicular directions parallel to the internal ordinary steel reinforcement. The test results clearly demonstrate that using CFRP leads to significant improvements in the flexural stiffness, flexural strength, and shear capacity of beam–column connections. Depending on the content of the ordinary reinforcement, thickness of the slab, and area of CFRP sheet, the flexural strength increased between 26 and 73% and the shear capacity increased between 17 and 45%. The measured stress in the CFRP sheets at nominal strength varied between 22 and 69% of the ultimate tensile strength of the fibers. Comparison with available prediction equations showed that the punching shear capacity can be predicted with reasonable accuracy if the contribution of CFRP reinforcement to the increase in flexural strength is accounted for. On the other hand, the code design expressions were conservative in predicting the capacity observed in the tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号