首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
All solid‐state enantioselective electrode (ASESE) based on a newly synthesized chiral crown ether derivative ((R)‐(?)‐(3,3′‐diphenyl‐1,1′‐binaphthyl)‐23‐crown‐6 incorporating 1,4‐dimethoxybenzene) was prepared and characterized by potentiometry. The ASESE clearly showed enantiomer discrimination for methyl esters of alanine, leucine, valine, phenylalanine, and phenylglycine, where the enantioselectivity for phenylglycine methyl ester was the highest (KR,S=8.5±7.1%). Experimental parameters of ASESE for the analysis of (R)‐(?)‐phenylglycine methyl ester were optimized. The optimized ASESE showed a slope of 55.3±0.2 mV/dec for (R)‐(?)‐phenylglycine methyl ester in the concentration range of 1.0×10?5–1.0×10?2 M and the detection limit was 9.0×10?6 M. The ASESE showed good selectivity for (R)‐(?)‐phenylglycine methyl ester against inorganic cations and various amino acid methyl esters. The concentration of (R)‐(?)‐phenylglycine methyl ester was determined in the mixture of (R)‐(?) and (S)‐(+)‐phenylglycine methyl ester, which ratios varied from 2 : 1 to 1 : 9. The lifespan of the electrode was alleged to be 30 days.  相似文献   

2.
Two new syntheses of verrucarinic acid (2S, 3R-dihydroxy-3-methylpentanoic acid) and its derivatives, suitably protected for the further conversion to macrocyclic trichothecenes, are described. The first one makes use of a diastereoselective alkylation of a (?)-(S)-malic acid ester and the regioselective reductin of one carboxyl function toa methyl group. The second approach involves a stereoselective addition of an allylsilane to a chiral glyoxylate.  相似文献   

3.
Methyl 2-O-benzyl-3,6-thioanhydro-α-D-mannopyranoside ( 9 ) was obtained in eight steps from the commercially available methyl α-D-glucopyranoside. Compound 9 was transformed into (2R,3R,4S)-3-benzyloxy-4-hydroxy-2-[(R)-1-benzyloxy-4-hydroxybutyl]thiolane ( 14 ) by acid hydrolysis of its 2,4-di-O-benzyl derivative 10 followed by reaction of the not isolated 2,4-di-O-benzyl-3,6-thioanhydro-D-mannose ( 11 ) with ethoxycarbonylmethylenetriphenylphosphorane to give an = 1:1 E/Z mixture of the corresponding α,β-unsaturated ester ( 12 ). Finally, catalytic hydrogenation of 12 to ethyl (R)-4-benzyloxy-4-[(2′R)3′R,4′S)-3′-benzyloxy-4′-hydroxythiolan-2′-yl]butanoate ( 13 ) and subsequent reduction with lithium aluminum hydride gave the title compound 14 .  相似文献   

4.
Photochemical Reaction of Optically Active 2-(1′-Methylallyl)anilines with Methanol It is shown that (?)-(S)-2-(1′-methylallyl)aniline ((?)-(S)- 4 ) on irradiation in methanol yields (?)-(2S, 3R)-2, 3-dimethylindoline ((?)-trans- 8 ), (?)-(1′R, 2′R)-2-(2′-methoxy-1′-methylpropyl)aniline ((?)-erythro- 9 ) as well as racemic (1′RS, 2′SR)-2-(2′-methoxy-1′-methylpropyl) aniline ((±)-threo- 9 ) in 27.1, 36.4 and 15.7% yield, respectively (see Scheme 3). By deamination and chemical correlation with (+)-(2R, 3R)-3-phenyl-2-butanol ((+)-erythro- 13 ; see Scheme 4) it was found that (?)-erythro- 9 has the same absolute configuration and optical purity as the starting material (?)-(S)- 4 . Comparable results are obtained when (?)-(S)-N-methyl-2-(1′-methylallyl)aniline ((?)-(S)- 7 ) is irradiated in methanol, i.e. the optically active indoline (+)-trans- 10 and the methanol addition product (?)-erythro- 11 along with its racemic threo-isomer are formed (cf. Scheme 3). These findings demonstrate that the methanol addition products arise from stereospecific, methanol-induced ring opening of intermediate, chiral trans, -(→(?)-erythro-compounds) and achiral cis-spiro [2.5]octa-4,6-dien-8-imines (→(±)-threo-compounds; see Schemes 1 and 2).  相似文献   

5.
(?)-(R)-4,4,4,4′,4′,4′-Hexafluorovaline hydrochloride ((R)- 5 ) of 98% ee is prepared from β,β-bis(trifluoromethyl)acrylic acid (= benzyl 4,4,4-trifluoro-3-(trifluoromethyl)but-2-enoate; 1 ) in 4 steps with an overall yield of 9.6%. Key step is the separation of the TsOH salts of the diastereoisomers obtained by anti-Michael addition of (+)-(R)-1-phenylethylamine ( 2 ) to 1 (→ (R,R)- 3 ). In contrast to the published (S)-chirality, the X-ray structure analysis of (R,S)- 6 reveals, that (R)-chirality has to be assigned to the levorotatory (?)-4,4,4,4′,4′,4′-hexafluorovaline hydrochloride.  相似文献   

6.
The synthesis, absolute configuration, and olfactive evaluation of (?)-(E)-α-trans-bergamotenone (= (?)-(1′S,6′R,E)-5-(2′,6′-dimethylbicyclo[3.1.1]hept-2′-en-6′-yl)pent-3-en-2-one; (?)- 1 ), as well as its homologue (?)- 19 are reperted. The previously arbitrarily attributed absolute configuration of 1 and of (?)-α-trans-bergamotene (= (?)-(1 S,6R)-2,6-dimethyl-6-(4-methylpent-3-enyl)bicyclo[3.1. 1]hept-2-ene; (?)- 2 ), together with those of the structurally related aldehydes (?)- 3a,b and alcohols (?)- 4a,b , have been rigorously assigned.  相似文献   

7.
The 2,2′‐methylenebis[furan] ( 1 ) was converted to 1‐{(4R,6S))‐6‐[(2R)‐2,4‐dihydroxybutyl]‐2,2‐dimethyl‐1,3‐dioxan‐4‐yl}‐3‐[(2R,4R)‐tetrahydro‐4,6‐dihydroxy‐2H‐pyran‐2‐yl)propan‐2‐one ((+)‐ 18 ) and its (4S)‐epimer (?)‐ 19 with high stereo‐ and enantioselectivity (Schemes 13). Under acidic methanolysis, (+)‐ 18 yielded a single spiroketal, (3R)‐4‐{(1R,3S,4′R,5R,6′S,7R)‐3′,4′,5′,6′‐tetrahydro‐4′‐hydroxy‐7‐methoxyspiro[2,6‐dioxabicyclo[3.3.1]nonane‐3,2′‐[2H]pyran]‐6′‐yl}butane‐1,3‐diol ((?)‐ 20 ), in which both O‐atoms at the spiro center reside in equatorial positions, this being due to the tricyclic nature of (?)‐ 20 (methyl pyranoside formation). Compound (?)‐ 19 was converted similarly into the (4′S)‐epimeric tricyclic spiroketal (?)‐ 21 that also adopts a similar (3S)‐configuration and conformation. Spiroketals (?)‐ 20 , (?)‐ 21 and analog (?)‐ 23 , i.e., (1R,3S,4′R,5R,6′R)‐3′,4′,5′,6′‐tetrahydro‐6′‐[(2S)‐2‐hydroxybut‐3‐enyl]‐7‐methoxyspiro[2,6‐dioxabicyclo[3.3.1]nonane‐3,2′‐[2H]pyran]‐4′‐ol, derived from (?)‐ 20 , were assayed for their cytotoxicity toward murine P388 lymphocytic leukemia and six human cancer cell lines. Only racemic (±)‐ 21 showed evidence of cancer‐cell‐growth inhibition (P388, ED50: 6.9 μg/ml).  相似文献   

8.
Synthesis of Recifeiolide The synthesis of the mould metabolite recifeiolide (VIII), a 12-membered ring lactone, is described. 1,3-Butandiol was resolved with (?)-camphanic acid via (R)-1-iodo-3-butanol (II) into (R)-3-hydroxybutyl triphenyl phosphonium iodide (III). Wittig condensation of the phosphorane derived from III with methyl 8-oxo-octanoate (V) led to the methyl trans-11-hydroxy-8-dodecenoate (VI). The corresponding hydroxy acid VII was transformed into the S-(2-pyridyl) carbothioate which cyclizes under the influence of silver ion to the lactone VIII. With (?)-(R)-1,3-butandiol (I) as starting material the naturally occurring (+)-(R)-recifeiolide (VIII) is produced in 70% yield from VII.  相似文献   

9.
(R)-(+)-2-Methyl-2-ethyl-3-propiothiolactone was synthesized by debenzylation and cyclization of (?)-2-methyl-2-ethyl-3-benzylmercaptopropionyl chloride under the conditions of Friedel-Crafts synthesis, and by dehydration of (R)-(+)-2-methyl-2-ethyl-3-mercaptopropionic acid with dicyclohexyl carbodiimide. The configuration of the (+)-propiothiolactone was determined by chemical interconversion with (?)-2-methyl-2-ethylsuccinic acid, the absolute configuration of which is known to be (R). The polymerization of (R)-(+)-2-methyl-2-ethyl-3-propiothiolactone was performed in bulk with tetrabutylammonium versatate as catalyst. The specific rotation of the polymer ([α]D +151.7°) compared with the rotation of the low molecular weight model compound (R)-(+)-2-methyl-2-ethyl-3-acetylmercapto-thiolpropionic acid methyl ester ([α]D +55.0°) shows a significant enhancement, thus suggesting the possibility of the presence of rigid conformations in polymer chain.  相似文献   

10.
The Mediterranean stolonifer Sarcodictyon roseum (= Rolandia rosea) (Cnidaria, Anthozoa, Alcyonaria, Stolonifera, Clavulariidae) is shown to contain two novel diterpenoidic alcohols esterified by (E)-N(1)-methyl-urocanic acid (= E)-3-(l-methyl-lH-imidazol-4-yl)acrylic acid). They are sarcodictyin A ( = (?)-(4R,4a,R, 7R,10S,11S,12aR,lZ,5E,8Z)-7,10-epoxy-3,4,4a,7,10,11,12,12a-octahydro-7-hydroxy-6-(methoxycarbonyl)-1,10-dimethyl-4-(1-methylethyl)benzocyclodecen-11-yl (E)-3-(1-methyl-lH-imidazol-4-yl)acrylate; (?)- 1 ) and sarco-dictyin B (the 6-(ethoxycarbonyl analogue; (?)- 2 ). The assignment of the structures is mainly based on 1D- and 2D-NMR data, as well as on chemical transformations of (?)- 1 , such as transesterification with MeONa/MeOH giving methyl (E)-N(1)-methylurocanate ( 3 ) and the free alcohol (+)- 4 and reduction with LiAlH4 followed by benzoylation giving dibenzoate 7. Absolute configurations are based on Horeau's method of esterification of (+)- 4 .  相似文献   

11.
Novel total syntheses of (R)-(?)-pyridindolol 1, (R)-(?)-pyridindolol K1 2, and (R)-(?)-pyridindolol K2 3 are described. By using l-tryptophan methyl ester and (S)-2,3-O-isopropylidene-l-glyceraldehyde as the starting materials, (R)-(?)-pyridindolol 1, (R)-(?)-pyridindolol K1 2, and (R)-(?)-pyridindolol K2 3 were synthesized in 5–7 steps in 66%, 41%, and 55% overall yields, respectively. The characteristic step of the total syntheses is a mild one-pot aromatization of N-tosyl-1,2,3,4-tetrahydro-β-carboline (N-Ts-THBC), which was obtained via Pictet–Spengler reaction of l-tryptophan methyl ester with (S)-2,3-O-isopropylidene-l-glyceraldehyde, and subsequent N-tosylation.  相似文献   

12.
(+)-cis-Khellactone methyl ether ( 4 ) and (?)-trans-khellactone methyl ether ( 6 ) had earlier been assigned the absolute configurations 3′-S; 4′-S and 3′-S; 4′-R, respectively, on the basis of the FREUDENBERG , rule. Both compounds together with their defunctionalised derivatives (?)- 7 and (+)- 8 (=(+)-lomatin), obtained from a mixture of (+)-visnadin ( 1 ) and (+)-samidin ( 2 ), were investigated by the HOREAU method. A conformational analytical study showed that the optical yield should rise in the order 4 < 6 < 7 , 8. This order was found and the α-phenylbutyric acid liberated was always dextrorotatory. The centre 3′ of the khellactones and their derivatives must be R-chiral and not S. Treatment of (?)- 6 with pyridinium perbromide gave (?)-trans-3-bromokhellactone methyl ether ( 11 ) as orthorhombic crystals. The X-ray crystal structure determination was made using the anomalous scattering of the Mo-K α radiation by Br. The result, — centre 3′ R-chiral (fig. g) — showed that the HOREAU method was correct.  相似文献   

13.
Synthesis of the optical isomers of (±)-methyl 6,7-dimethyl-3′,4′-dideoxynorlaudanosoline-1-carboxylate ((±)- 2 ) was accomplished by reaction of (±)- 2 with (+)-(R)-1-phenylethyl isocyanate, separation of the urea diastereoisomers (?)- 4A and (+)- 4B , and alcoholysis of the ureas in refluxing BuOH. Optically active isoquinoline-carboxylates 2A , B and hydantoins 8A , B isolated were characterized. The absolute configuration of the reaction products was established by X-ray analysis of the optically active hydantoin (+)- 8A . Hydrolysis of the methyl isoquinolinecarboxylates 2A , B with 48% HBr soln. at reflux afforded the desired optically active 3′,4′-dideoxynorlaudanosoline-1-carboxylic acids 1A , B required for enzyme-inhibition studies. Details of the X-ray diffraction analysis of (+)-methyl salsoline-1-carboxylate hydrobromide ((+)- 11A ·HBr) prepared earlier are included. CD spectra of (+)-(S)-methyl 6,7-dimethyl-3′,4′-dideoxynorlaudanosoline-1-carboxylate hydrobromide ((+)- 2A . HBr) and (?)-(R)-methyl salsoline-1-carboxylate hydrochloride ((?)- 11B ·HCl) confirmed the assignment of their (S)- and (R)-configurations, respectively.  相似文献   

14.
Determination of the Chirality Sense of the Enantiomeric 2,6-Adamantanediols The enantiomers of 2,6-adamantanediol ( 1 ) are resolved via the diastereoisomeric camphanoates. The (2R,6R)-chirality sense for (?)- 1 and (2S,6S) for (+)- 1 was determined by chemical correlation with (?)-(1R,5R)-bicyclo[3.3.1]nonan-2,6-dion ((1R,5R)- 3 ) of known absolute configuration in the following way: alkylation of the bis(pyrrolidine enamine) of (?)-(1R,5R)- 3 with CD2I2 and hydrolysis of the product gives the enantiomer 4 of (4,4-D2)-2,6-adamantanedione. Reduction of 4 with LiAlH4 leads to one enantiomer (Scheme 2) of each of the three diols 5 – 7 of known absolute configuration. The three diols are themselves configurational isomers due to the presence of the CD2 group, but correspond otherwise entirely to the enantiomeric diols 1 . Accordingly, they can also be separated by means of their diastereoisomeric camphanoates to give the diols 5 / 6 and 7 . These samples are easily distinguished and identified by their characteristic 1H-NMR spectra (cf. Fig. 2). This allows to identify the (2R,6R)- and (2S,6S)-enantiomer of 1 on the basis of their behavior in the resolution experiment analogous to that of the diols 5 / 6 and 7 , respectively. The diol (?)- 1 must have the (2R,6R)-configuration because it forms, like the diols 5 / 6 , with (?)-camphanic acid the diastereoisomeric ester less soluble in benzene. The diol (+)- 1 has (2S,6S)-configuration, because it forms, like 7 , with (+)-camphanic acid the diastereoisomeric ester less soluble in benzene. The bis(4-methoxybenzoate) of (?)-(2R,6R)- 1 shows chiroptical properties which are in accordance with Nakanishi's rule for two chromophores having coupled electric dipol transition moments arranged with a left-handed torsion angle.  相似文献   

15.
Following a known procedure, a mixture of (?)-(2S,3R)- and (+)-(2R,3R)-2,3-epoxy-citronellols ( 5 ) was prepared from (?)-(R)-linalool ( 3 ) via epoxy alcohol 4 and then reduced to (?)-(R)-3-hydroxy-citronellol ( 6 ). Sensitized photooxygenation of (?)-(R)-diol 6 led in part to (?)-(R)-triol 8 which was cyclodehydrated by dilute acid to a mixture of diastereoisomeric tetrahydropyran-4-ols 9 and 10 . Dehydration of hydroxy ethers 9 and 10 afforded (?)-(S)-nerol oxide ( 11 ) and (+)-(R)-nerol oxide ( 12 ), respectively, with an optical purity of 91%. Nerol oxide isolated from Bulgarian rose oil (0.038%) proved to be racemic. These results shed some light on the formation of nerol oxide in plants.  相似文献   

16.
Isozeaxanthin: Chirality and Enantioselective Synthesis of (4R,4′R)-Isozeaxanthin ((?)-(4R,4′R)-β, β-Carotin-4,4′-diol) The absolute configuration of optically active isozeaxanthin was established by synthesis using (?)-(R)-4-hydroxy-β-ionon ( 2 ) [18] as starting material.  相似文献   

17.
Reaction of trimethyl-hydroquinone with methyl vinyl ketone in acidic methanol gave rac.-2-methoxy-2,5,7,8-tetramethyl-chroman-6-ol ( 8 ). This acetal was converted in four steps to rac.-(6-hydroxy-2,5,7,8-tetramethyl-chroman-2-yl)acetic acid ( 13 ). Acid 13 was readily resolved with α-methyl-benzylamine to give the (S)-enantiomer 14 . Treatment of the unwanted (2 R)-isomer with acid regenerated 13 , thus leading to an efficient use of this compound. Employing a side chain derived from phytol, 14 was converted to (2R, 4′R, 8′R)-α-tocopherol ( 1d , ‘natural’ vitamin E). A reaction sequence from 14 involving two highly stereoselective Claisen rearrangements has provided the first total synthesis of (2R,'E,7′E)-α-tocotrienol ( 2d ).  相似文献   

18.
(1S,2R,6R,7R)-4-Phenyl-3,10-dioxa-5-azatricyclo[5.2.1.02,6]dec-4-en-9-one ((+)- 5 ) obtained in 6 steps from the Diels-Alder adduct of furan to 1-cyanovinyl (1S)-camphanate ((+)- 3 ) was reduced to the corresponding endo-alcohol (?)- 6 the treatment of which with HBr/AcOH provided (?)-(3aS,4S,6R,7S,7aR)-4β-bromo-3aβ,4,5,6,7,7aβ-hexahydro-2-phenyl-1,3-benzoxazole-6β,7α-diyl diacetate ((?)- 17 ). Elimination of HBr with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and acidic hydrolysis furnished (?)-(1R,2S,3R,4R)-4-aminocyclohex-5-ene-1,2,3-triol ( ? (?)-conduramine C1;(?)- 1 ).  相似文献   

19.
《Tetrahedron: Asymmetry》2006,17(22):3063-3066
A stereocontrolled synthesis of the methyl ester of (2S)-3-amino-2-((4′S)-2′,2′-dimethyl-1′,3′-dioxolan-4′-yl)propanoic acid from d-glyceraldehyde is described for the first time. This method involves the stereoselective Michael addition of the lithium salt of tris(phenylthio)methane to (S)-2,2-dimethyl-4-((E)-2-nitrovinyl)-1,3-dioxolane followed by hydrolysis of the resulting (4S)-2,2-dimethyl-4-((2′S)-3′-nitro-1′,1′,1′-tris(phenylthio)propan-2′-yl)-1,3-dioxolane to (2S)-methyl 2-((4′S)-2′,2′-dimethyl-1′,3′-dioxolan-4′-yl)-3-nitropropanoate, which was finally reduced to the target compound. A similarly stereocontrolled transformation of l-glyceraldehyde into (2R)-methyl 3-amino-2-((4′R)-2′,2′-dimethyl-1′,3′-dioxolan-4′-yl)propanoate is also described.  相似文献   

20.
(R)- and (S)-4-Amino-3-methylbutanoic acids were synthesized in high yields via initial enantioselective hydrolysis of dimethyl 3-methylglutarate to methyl (R)-3-methylglutarate with pig liver esterase. The ester group was converted to an amine to give (R)-4-amino-3-methylbutanoic acid; the carboxylic acid was converted to an amine to give (S)-4-amino-3-methylbutanoic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号