首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of microstructure on inverse fracture occurring in the hammer-impacted region were analyzed after conducting a drop-weight tear test (DWTT) on high-toughness pipeline steels. Three kinds of steels were fabricated by varying the alloying elements, and their microstructures were varied by the rolling conditions. The pressed-notch (PN) or chevron-notch (CN) DWTT and Charpy V-notch (CVN) impact tests were conducted on the rolled steel specimens, and the results were discussed in comparison with the data obtained from CVN tests of prestrained specimens. In the hammer-impacted region of the DWTT specimens, abnormal inverse fracture having a cleavage fracture mode appeared, and the inverse fracture area correlated well with the upper-shelf energy (USE) obtained from the CVN test and with the grain size. The steel specimens having a higher USE or having coarse polygonal ferrite tended to have a larger inverse fracture area than those having a lower USE or having fine acicular ferrite. This was because steels having a higher impact absorption energy required higher energy for fracture initiation and propagation during the DWTT. These results were confirmed by the CVN data of prestrained steel specimens.  相似文献   

2.
Effects of microstructure on fracture toughness and transition temperature of high-toughness X70 pipeline steels were investigated in this study. Three types of steels were fabricated by varying alloying elements such as C, Cu, and Mo, and their microstructures were varied by rolling conditions such as finish rolling temperature and finish cooling temperature. Charpy V-notch (CVN) impact tests and pressed notch drop-weight tear tests (DWTT) were conducted on the rolled steel specimens. The Charpy impact test results indicated that the specimens rolled in the single-phase region of the steel containing a reduced amount of C and Mo had the highest upper shelf energy (USE) and the lowest energy transition temperature (ETT) because of the appropriate formation of acicular, quasipolygonal, or polygonal ferrite and the decreased fraction of martensite-austenite constituents. Most of the specimens rolled in the single-phase region also showed excellent DWTT properties as the percent shear area (pct SA) well exceeded 85 pct, irrespective of finish cooling temperatures, while their USE was higher than that of the specimens rolled in the two-phase region. Thus, overall fracture properties of the specimens rolled in the single-phase region were better than those of the specimens rolled in the two-phase region, considering both USE and pct SA.  相似文献   

3.
Effects of microstructure on fracture toughness and transition temperature of high-toughness X70 pipeline steels were investigated in this study. Three types of steels were fabricated by varying alloying elements such as C, Cu, and Mo, and their microstructures were varied by rolling conditions such as finish rolling temperature and finish cooling temperature. Charpy V-notch (CVN) impact tests and pressed notch drop-weight tear tests (DWTT) were conducted on the rolled steel specimens. The charpy impact test results indicated that the specimens rolled in the single-phase region of the steel containing a reduced amount of C and Mo had the highest upper shelf energy (USE) and the lowest energy transition temperature (ETT) because of the appropriate formation of acicular, quasipolygonal, or polygonal ferrite and the decreased fraction of martensite-austenite constituents. Most of the specimens rolled in the single-phase region also showed excellent DWTT properties as the percent shear area (pct SA) well exceeded 85 pct, irrespective of finish cooling temperatures, while their USE was higher than that of the specimens rolled in the two-phase region. Thus, overall fracture properties of the specimens rolled in the single-phase region were better than those of the specimens rolled in the two-phase region, considering both USE and pct SA. are jointly appointed with the Materials Science and Engineering Department, Pohang University of Science and Technology.  相似文献   

4.
This study is concerned with effects of specimen thickness and notch shape on drop weight tear test (DWTT) properties and fracture modes of API X70 and API X80 low-carbon microalloyed linepipe steels. Detailed fractographic analysis of broken DWTT specimens showed that the fracture initiated in an initial cleavage mode near the specimen notch and that some delaminations occurred at the center of the fracture surface. The chevron notch (CN) DWTT specimens had broader initial cleavage areas than the pressed notch (PN) DWTT specimens. The larger inverse fracture areas (i.e., cleavage areas close the hammer impact side) appeared in the PN DWTT specimens, because their higher fracture initiation energy at the notch allowed a higher strain hardening in the hammer-impacted region. The number and length of delaminations were larger in the CN DWTT specimens than in the PN DWTT specimens, and increased with increasing specimen thickness due to the plane strain condition effect. As the test temperature decreased, the tendency of delaminations increased, but delaminations were not found when the cleavage fracture prevailed at very low temperatures. The DWTT test results such as upper shelf energy (USE) and energy transition temperature (ETT) were discussed with relation to microstructures and fracture modes including initial cleavage fracture, ductile fracture, inverse fracture, and delaminations.  相似文献   

5.
6.
This study is concerned with effects of complex oxides on acicular ferrite (AF) formation, tensile and Charpy impact properties, and fracture toughness in heat affected zones (HAZs) of oxide-containing API X80 linepipe steels. Three steels were fabricated by adding Mg and O2 to form oxides, and various HAZ microstructures were obtained by conducting HAZ simulation tests under different heat inputs. The no. of oxides increased with increasing amount of Mg and O2, while the volume fraction of AF present in the steel HAZs increased with increasing the no. of oxides. The strengths of the HAZ specimens were generally higher than those of the base metals because of the formation of hard microstructures of bainitic ferrite and granular bainite. When the total Charpy absorbed energy was divided into the fracture initiation and propagation energies, the fracture initiation energy was maintained constant at about 75 J at room temperature, irrespective of volume fraction of AF. The fracture propagation energy rapidly increased from 75 to 150 J and saturated when the volume fraction of AF exceeded 30 pct. At 253 K (?20 °C), the total absorbed energy increased with increasing volume fraction of AF, as the cleavage fracture was changed to the ductile fracture when the volume fraction of AF exceeded 45 pct. Thus, 45 vol pct of AF at least was needed to improve the Charpy impact energy, which could be achieved by forming a no. of oxides. The fracture toughness increased with increasing the no. of oxides because of the increased volume fraction of AF formed around oxides. The fracture toughness did not show a visible correlation with the Charpy absorbed energy at room temperature, because toughness properties obtained from these two toughness testing methods had different significations in view of fracture mechanics.  相似文献   

7.
Correlation of rolling conditions, microstructure, and low-temperature toughness of high-toughness X70 pipeline steels was investigated in this study. Twelve kinds of steel specimens were fabricated by vacuum-induction melting and hot rolling, and their microstructures were varied by rolling conditions. Charpy V-notch (CVN) impact test and drop-weight tear test (DWTT) were conducted on the rolled steel specimens in order to analyze low-temperature fracture properties. Charpy impact test results indicated that the energy transition temperature (ETT) was below −100 °C when the finish cooling temperature range was 350 °C to 500 °C, showing excellent low-temperature toughness. The ETT increased because of the formation of bainitic ferrite and martensite at low finish cooling temperatures and because of the increase in effective grain size due to the formation of coarse ferrites at high finish cooling temperatures. Most of the specimens also showed excellent DWTT properties as the percent shear area well exceeded 85 pct, irrespective of finish rolling temperatures or finish cooling temperatures, although a large amount of inverse fracture occurred at some finish cooling temperatures.  相似文献   

8.
This study aimed at investigating effects of strain rate and test temperature on deformation and fracture behavior of three API X70 and X80 linepipe steels fabricated by varying alloying elements and hot-rolling conditions. Quasi-static and dynamic torsional tests were conducted on these steels having different grain sizes and volume fractions of acicular ferrite and polygonal ferrite, using a torsional Kolsky bar, and then the test data were compared via microstructures, tensile properties, and adiabatic shear band formation. The dynamic torsional test results indicated that the steels rolled in the single-phase region had the higher maximum shear stress than the steel rolled in the two-phase region, because their microstructures were composed mainly of acicular ferrites. Particularly in the API X80 steel rolled in the single-phase region, increased dynamic torsional properties could be explained by the decrease in the overall effective grain size due to the presence of acicular ferrite having smaller effective grain size. The possibility of the adiabatic shear band formation at low temperatures was also analyzed by the energy required for void initiation and difference in effective grain size.  相似文献   

9.
霍孝新  周平  黄少文  吴会亮  代平 《山东冶金》2011,(5):99-101,106
结合12~33mm厚X70管线钢落锤试验结果,利用光学显微镜和扫描电镜研究和分析不同厚度落锤试样的组织演变规律及组织对落锤性能的影响。结果表明:随着钢板厚度的增加,钢的组织由彼此交织在一起的针状铁素体、多边形铁素体/准多边形铁素体演变成粒状贝氏体+少量针状铁素体/多边形铁素体,碳化物的析出数量和析出尺寸随之增加。具有交织在一起的非等轴状AF+PF/QF混合组织的试样落锤性能优于以晶粒粗大粒状贝氏体为基体组织的试样的落锤性能。通过控制M/A岛形态和分布可以提高钢的落锤性能。  相似文献   

10.
The effects of B and Cu addition and cooling rate on microstructure and mechanical properties of low-carbon, high-strength bainitic steels were investigated in this study. The steel specimens were composed mostly of bainitic ferrite, together with small amounts of acicular ferrite, granular bainite, and martensite. The yield and tensile strengths of all the specimens were higher than 1000?MPa and 1150?MPa, respectively, whereas the upper shelf energy was higher than 160?J and energy transition temperature was lower than 208?K (?C65?°C) in most specimens. The slow-cooled specimens tended to have the lower strengths, higher elongation, and lower energy transition temperature than the fast-cooled specimens. The Charpy notch toughness was improved with increasing volume fraction of acicular ferrite because acicular ferrites favorably worked for Charpy notch toughness even when other low-toughness microstructures such as bainitic ferrite and martensite were mixed together. To develop high-strength bainitic steels with an excellent combination of strength and toughness, the formation of bainitic microstructures mixed with acicular ferrite was needed, and the formation of granular bainite was prevented.  相似文献   

11.
Microstructures in X80 line pipe were classified by SEM analysis.The experimental results showed that the microstructures in X 80 line pipe steels were complicated consisting of polygonal ferrite,bainite and acicular ferrite.Orientation relation within acicular ferrite was investigated systematically by means of EBSD-OIM.The sub-structures were observed maximum in acicular ferrite which gives high strength and high toughness to line pipe steels.The K-S orientation relation was generally observed between acicular ferrite and austenite during phase transformation.The low energy CSL boundary characterized by Σ3 orientation relation according to Brandon criterion appeared with higher probability,which was benefit to improve the mechanical properties of line pipe steels.The orientations or texture of initial austenite grains could be deduced based on the Σ3 orientation relationship of acicular ferrite variants.  相似文献   

12.
Correlation between Charpy V-notch (CVN) impact properties, drop-weight tear test (DWTT) properties, and crack-tip opening angles for stable crack propagation (CTOAsc) in high-toughness API X70 pipeline steels was investigated in this study. Two-specimen CTOA test (TSCT) was conducted on the rolled steel materials to measure the CTOAsc, and the test results were compared to the CVN and DWTT data to find correlations between them. The CVN total energy density showed an almost 1:1 linear correlation with the DWTT initiation energy density. The TSCT results indicated that the materials rolled in the single-phase region had the larger CTOAsc as well as the higher CVN and DWTT energy density than those rolled in the two-phase region because their microstructures were composed of acicular ferrites and fine polygonal ferrites. The CTOAsc had a better correlation with the DWTT propagation energy density or the CVN total energy density than the DWTT total energy density. In particular, the value of sin (2CTOAsc) reliably represented a linear proportional relation to the DWTT propagation energy density.  相似文献   

13.
14.
The effects of microstructure on through-thickness fracture properties of a Ti-V-N plate steel have been determined directly by through-thickness tensile tests and indirectly by studying delamination fractures in longitudinal tensile and Charpy tests. The initiation of ductile fracture is primarily controlled by inclusions, but overall ductility is influenced by microstructure such that the tensile fracture strain is higher for ferrite-pearlite microstructures than for ferrite-bainite or ferrite-martensite. The cleavage fracture stress is lower for steels which have been rolled belowAr 3 and contain deformed ferrite than for steels finish rolled aboveAr 3. Measurements of true stress and true strain for fracture initiation qualitatively fit a model which assumes cleavage fracture occurs at a critical stress, ductile rupture at a critical strain, and a transition fracture mode comprising ductile initiation followed by cleavage. Formerly Visiting Research Fellow, Metals Technology Laboratories, CANMET, Ottawa, ON, Canada Formerly Research Scientist, Metals Technology Laboratories, CANMET  相似文献   

15.
The effects of microstructure on through-thickness fracture properties of a Ti-V-N plate steel have been determined directly by through-thickness tensile tests and indirectly by studying delamination fractures in longitudinal tensile and Charpy tests. The initiation of ductile fracture is primarily controlled by inclusions, but overall ductility is influenced by microstructure such that the tensile fracture strain is higher for ferrite-pearlite microstructures than for ferrite-bainite or ferrite-martensite. The cleavage fracture stress is lower for steels which have been rolled belowAr 3 and contain deformed ferrite than for steels finish rolled aboveAr 3. Measurements of true stress and true strain for fracture initiation qualitatively fit a model which assumes cleavage fracture occurs at a critical stress, ductile rupture at a critical strain, and a transition fracture mode comprising ductile initiation followed by cleavage. Formerly Visiting Research Fellow, Metals Technology Laboratories, CANMET, Ottawa, ON, Canada Formerly Research Scientist, Metals Technology Laboratories, CANMET  相似文献   

16.
The correlation of microstructure and Charpy V-notch (CVN) impact properties of a high-toughness API X70 pipeline steel was investigated in this study. Six kinds of steel were fabricated by varying the hot-rolling conditions, and their microstructures, effective grain sizes, and CVN impact properties were analyzed. The CVN impact test results indicated that the steels rolled in the single-phase region had higher upper-shelf energies (USEs) and lower energy-transition temperatures (ETTs) than the steels rolled in the two-phase region because their microstructures were composed of acicular ferrite (AF) and fine polygonal ferrite (PF). The decreased ETT in the steels rolled in the single-phase region could be explained by the decrease in the overall effective grain size due to the presence of AF having a smaller effective grain size. On the other hand, the absorbed energy of the steels rolled in the two-phase region was considerably lower because a large amount of dislocations were generated inside PFs during rolling. It was further decreased when coarse martensite or cementite was formed during the cooling process.  相似文献   

17.
The effects of martensite morphology and volume fraction on the quasi-static and dynamic deformation behavior of dual-phase steels were investigated in this study. Quasi-static and dynamic torsional tests were conducted using a torsional Kolsky bar for four steel specimens, which had different martensite morphology and volume fraction, and then the test data were compared via microstructures, tensile properties, and fracture mode. In the intermediate quenched (IQ) steel specimens, very fine fibrous martensites were well distributed in the ferrite matrix, but bulky martensites were mixed with ferrites in the step quenched (SQ) specimens. Quasi-static torsional properties were similar to tensile properties, and fracture occurred in a ductile mode in IQ specimens, whereas cleavage fracture was predominated in SQ specimens. Under a dynamic loading condition, the fracture mode of SQ specimens was changed from cleavage to ductile fracture, whereas IQ specimens had a ductile fracture mode, irrespective of loading rate. These phenomena were analyzed using a shear lag model, phase continuity, and the thermal softening effect of martensite.  相似文献   

18.
通过对X70钢DWTT断口纤维率差别较大的两类试样进行断口形貌和组织对比分析,结果表明:断口纤维率存在差别的原因是带状组织、组织类型的差异。要提高X70钢的断口纤维率,需获得以针状铁素体为主的金相组织,提高组织的均匀性,避免成分偏析。  相似文献   

19.
基于应变设计用厚规格X80管线钢组织与性能关系   总被引:1,自引:0,他引:1  
 针对西气东输三线在强震和断层活跃地区对基于应变设计的抗大变形1219mm×26.4mm X80钢管的迫切需求,通过光学金相、SEM、拉伸和冲击试验研究了抗大变形“铁素体+贝氏体”双相钢的铁素体体积分数、晶粒尺寸对钢板/管的纵向屈服强度、均匀变形伸长率、冲击韧性的影响规律,总结了小批量生产中板管关系的变化特点。发现1219mm×26.4mm X80抗大变形钢管在较大的铁素体体积分数变化范围内可实现技术指标的要求,但较高的铁素体数量不利于钢管的冲击韧性,铁素体体积分数不宜过大;铁素体晶粒细化对提高钢管的强度和改善钢管的断裂韧性十分关键,多边形铁素体细化是十分必要的。  相似文献   

20.
钛微合金化X70管线钢动态CCT曲线研究   总被引:1,自引:0,他引:1  
结合CSP短流程Ti微合金化X70管线钢的开发,用Gleeble-1500热模拟实验机测定了钛微合金化X70管线钢在不同冷却速度下的动态CCT曲线,分析和观察了对应的相变和组织.实验结果表明,钛微合金化X70管线钢控冷工艺对其组织有较大影响.钛微合金化X70管线钢中针状铁素体的比例随热变形后冷却速度的提高而增加,但冷却速度达到10℃/s以后,该比例变化不大.为了得到具有优良综合性能的X70管线钢,即得到以细小均匀的针状铁素体为主的理想组织,应将冷却速度控制在10℃/s左右.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号