首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 68 毫秒
1.
The effect of antifreeze protein type III (one type of fish antifreeze protein) on ice crystallization was examined quantitatively based on a "micro-sized ice nucleation" technique. It was found for the first time that antifreeze proteins can inhibit the ice nucleation process by adsorbing onto both the surfaces of ice nuclei and dust particles. This leads to an increase of the ice nucleation barrier and the desolvation kink kinetics barrier, respectively. Based on the latest nucleation model, the increases in the ice nucleation barrier and the kink kinetics barrier were measured. This enables us to quantitatively examine the antifreeze mechanism of antifreeze proteins for the first time.  相似文献   

2.
It was found that freezing of water in terms of homogeneous nucleation of ice never occurs even in ultra-clean micro-sized water droplets under normal conditions. More surprisingly, at sufficiently low supercoolings, foreign nano-particles exert no effect on the nucleation barrier of ice; it is as if they physically "vanished." This effect, called hereafter the "zero-sized" effect of foreign particles (or nucleators), leads to the entry of a so-called inverse homogeneous-like nucleation domain, in which nucleation is effectively suppressed. The freezing temperature of water corresponds to the transition temperature from the inverse homogeneous-like nucleation regime to foreign particle-mediated heterogeneous nucleation. The freezing temperature of water is mainly determined by (i) the surface roughness of nucleators at large supercoolings, (ii) the interaction and structural match between nucleating ice and the substrate, and (iii) the size of the effective surface of nucleators at low supercoolings. Our experiments showed that the temperature of -40 degrees C, commonly regarded as the temperature of homogeneous nucleation-mediated freezing, is actually the transition temperature from the inverse homogeneous-like nucleation regime to foreign particle-mediated heterogeneous nucleation in ultra-clean water. Taking advantage of inverse homogeneous-like nucleation, the interfacial tensions between water and ice in very pure water and antifreeze aqueous solutions were measured at a very high precision for the first time. The principles of freezing promotion and antifreeze and the selection for the biological ice nucleation and antifreeze proteins are obtained. The results provide completely new insights into freezing and antifreeze phenomena and bear generic implications for all crystallization systems.  相似文献   

3.
The mechanism by which fish antifreeze proteins cause thermal hysteresis   总被引:6,自引:0,他引:6  
Antifreeze proteins are characterised by their ability to prevent ice from growing upon cooling below the bulk melting point. This displacement of the freezing temperature of ice is limited and at a sufficiently low temperature a rapid ice growth takes place. The separation of the melting and freezing temperature is usually referred to as thermal hysteresis, and the temperature of ice growth is referred to as the hysteresis freezing point. The hysteresis is supposed to be the result of an adsorption of antifreeze proteins to the crystal surface. This causes the ice to grow as convex surface regions between adjacent adsorbed antifreeze proteins, thus lowering the temperature at which the crystal can visibly expand. The model requires that the antifreeze proteins are irreversibly adsorbed onto the ice surface within the hysteresis gap. This presupposition is apparently in conflict with several characteristic features of the phenomenon; the absence of superheating of ice in the presence of antifreeze proteins, the dependence of the hysteresis activity on the concentration of antifreeze proteins and the different capacities of different types of antifreeze proteins to cause thermal hysteresis at equimolar concentrations. In addition, there are structural obstacles that apparently would preclude irreversible adsorption of the antifreeze proteins to the ice surface; the bond strength necessary for irreversible adsorption and the absence of a clearly defined surface to which the antifreeze proteins may adsorb. This article deals with these apparent conflicts between the prevailing theory and the empirical observations. We first review the mechanism of thermal hysteresis with some modifications: we explain the hysteresis as a result of vapour pressure equilibrium between the ice surface and the ambient fluid fraction within the hysteresis gap due to a pressure build-up within the convex growth zones, and the ice growth as the result of an ice surface nucleation event at the hysteresis freezing point. We then go on to summarise the empirical data to show that the dependence of the hysteresis on the concentration of antifreeze proteins arises from an equilibrium exchange of antifreeze proteins between ice and solution at the melting point. This reversible association between antifreeze proteins and the ice is followed by an irreversible adsorption of the antifreeze proteins onto a newly formed crystal plane when the temperature is lowered below the melting point. The formation of the crystal plane is due to a solidification of the interfacial region, and the necessary bond strength is provided by the protein "freezing" to the surface. In essence: the antifreeze proteins are "melted off" the ice at the bulk melting point and "freeze" to the ice as the temperature is reduced to subfreezing temperatures. We explain the different hysteresis activities caused by different types of antifreeze proteins at equimolar concentrations as a consequence of their solubility features during the phase of reversible association between the proteins and the ice, i.e., at the melting point; a low water solubility results in a large fraction of the proteins being associated with the ice at the melting point. This leads to a greater density of irreversibly adsorbed antifreeze proteins at the ice surface when the temperature drops, and thus to a greater hysteresis activity. Reference is also made to observations on insect antifreeze proteins to emphasise the general validity of this approach.  相似文献   

4.
《Cryobiology》2006,52(3):262-280
Antifreeze proteins are characterised by their ability to prevent ice from growing upon cooling below the bulk melting point. This displacement of the freezing temperature of ice is limited and at a sufficiently low temperature a rapid ice growth takes place. The separation of the melting and freezing temperature is usually referred to as thermal hysteresis, and the temperature of ice growth is referred to as the hysteresis freezing point. The hysteresis is supposed to be the result of an adsorption of antifreeze proteins to the crystal surface. This causes the ice to grow as convex surface regions between adjacent adsorbed antifreeze proteins, thus lowering the temperature at which the crystal can visibly expand. The model requires that the antifreeze proteins are irreversibly adsorbed onto the ice surface within the hysteresis gap. This presupposition is apparently in conflict with several characteristic features of the phenomenon; the absence of superheating of ice in the presence of antifreeze proteins, the dependence of the hysteresis activity on the concentration of antifreeze proteins and the different capacities of different types of antifreeze proteins to cause thermal hysteresis at equimolar concentrations. In addition, there are structural obstacles that apparently would preclude irreversible adsorption of the antifreeze proteins to the ice surface; the bond strength necessary for irreversible adsorption and the absence of a clearly defined surface to which the antifreeze proteins may adsorb. This article deals with these apparent conflicts between the prevailing theory and the empirical observations. We first review the mechanism of thermal hysteresis with some modifications: we explain the hysteresis as a result of vapour pressure equilibrium between the ice surface and the ambient fluid fraction within the hysteresis gap due to a pressure build-up within the convex growth zones, and the ice growth as the result of an ice surface nucleation event at the hysteresis freezing point. We then go on to summarise the empirical data to show that the dependence of the hysteresis on the concentration of antifreeze proteins arises from an equilibrium exchange of antifreeze proteins between ice and solution at the melting point. This reversible association between antifreeze proteins and the ice is followed by an irreversible adsorption of the antifreeze proteins onto a newly formed crystal plane when the temperature is lowered below the melting point. The formation of the crystal plane is due to a solidification of the interfacial region, and the necessary bond strength is provided by the protein “freezing” to the surface. In essence: the antifreeze proteins are “melted off” the ice at the bulk melting point and “freeze” to the ice as the temperature is reduced to subfreezing temperatures. We explain the different hysteresis activities caused by different types of antifreeze proteins at equimolar concentrations as a consequence of their solubility features during the phase of reversible association between the proteins and the ice, i.e., at the melting point; a low water solubility results in a large fraction of the proteins being associated with the ice at the melting point. This leads to a greater density of irreversibly adsorbed antifreeze proteins at the ice surface when the temperature drops, and thus to a greater hysteresis activity. Reference is also made to observations on insect antifreeze proteins to emphasise the general validity of this approach.  相似文献   

5.
黄粉虫Tenebrio molitor L.抗冻蛋白基因家族有多个成员,其氨基酸数量和蛋白结构存在差异。尽管有报道发现冷驯化后这些抗冻蛋白的表达量会升高,但不同家族成员是否存在功能分化尚不清楚。本研究中,检测了冷驯化对低温死亡率的效应和对不同类型的抗冻蛋白家族成员基因表达量的影响。结果表明,冷驯化可以显著降低黄粉虫幼虫的低温死亡率和提高不同类型抗冻蛋白基因的表达量。其中,长的抗冻蛋白和低温死亡率的相关关系最为明显。说明不同的抗冻蛋白家族成员的功能有明显的分化,为进一步理解抗冻蛋白的活性和利用抗冻蛋白提供了新的认识。  相似文献   

6.
The Arctic plant growth-promoting rhizobacterium Pseudomonas putida GR12-2 secretes an antifreeze protein (AFP) that promotes survival at subzero temperatures. The AFP is unusual in that it also exhibits a low level of ice nucleation activity. A DNA fragment with an open reading frame encoding 473 amino acids was cloned by PCR and inverse PCR using primers designed from partial amino acid sequences of the isolated AFP. The predicted gene product, AfpA, had a molecular mass of 47.3 kDa, a pI of 3.51, and no previously known function. Although AfpA is a secreted protein, it lacked an N-terminal signal peptide and was shown by sequence analysis to have two possible secretion systems: a hemolysin-like, calcium-binding secretion domain and a type V autotransporter domain found in gram-negative bacteria. Expression of afpA in Escherichia coli yielded an intracellular 72-kDa protein modified with both sugars and lipids that exhibited lower levels of antifreeze and ice nucleation activities than the native protein. The 164-kDa AFP previously purified from P. putida GR12-2 was a lipoglycoprotein, and the carbohydrate was required for ice nucleation activity. Therefore, the recombinant protein may not have been properly posttranslationally modified. The AfpA sequence was most similar to cell wall-associated proteins and less similar to ice nucleation proteins (INPs). Hydropathy plots revealed that the amino acid sequence of AfpA was more hydrophobic than those of the INPs in the domain that forms the ice template, thus suggesting that AFPs and INPs interact differently with ice. To our knowledge, this is the first gene encoding a protein with both antifreeze and ice nucleation activities to be isolated and characterized.  相似文献   

7.
Stabilization of supercooled fluids by thermal hysteresis proteins.   总被引:3,自引:0,他引:3       下载免费PDF全文
It has been reported that thermal hysteresis proteins found in many cold-hardy, freeze-avoiding arthropods stabilize their supercooled body fluids. We give evidence that fish antifreeze proteins, which also produce thermal hysteresis, bind to and reduce the efficiency of heterogenous nucleation sites, rather than binding to embryonic ice nuclei. We discuss both possible mechanisms for stabilization of supercooled body fluids and also describe a new method for measuring and defining the supercooling point of small volumes of liquid.  相似文献   

8.
  The effect of gut fluid ice nucleators and antifreeze proteins on maintenance of supercooling was explored in fire-colored beetle larvae, Dendroides canadensis, via seasonal monitoring of supercooling points, antifreeze protein activity and ice nucleator activity of gut fluid and/or larvae. During cold hardening in the field, freeze-avoiding larvae evacuated their guts and depressed larval supercooling points. Analysis of gut fluid indicated supercooling points and ice nucleator activity decreased, whereas antifreeze protein activity increased as winter approached. Suspensions of bacteria isolated from guts of feeding larvae collected in spring/summer had higher supercooling points than those from midwinter-collected non-feeding larvae, suggesting bacterial ice nucleators are removed from midwinter gut fluid. The ice nucleation active bacterium Pseudomonas fluorescens was isolated from gut fluid of feeding larvae but was absent in winter. When mixed with purified D.␣canadensis hemolymph antifreeze proteins (structurally similar and/or identical to those in gut fluid), the cumulative ice nucleus spectra of P. fluorescens suspensions were shifted to lower temperatures indicating an inhibitory effect on the bacteria's ice-nucleating phenotype. By extending larval supercooling capacity, both gut clearing and masking of bacterial ice nucleators by antifreeze proteins may contribute to overwintering survival in supercooled insects. Accepted: 8 August 1996  相似文献   

9.
Antifreeze proteins in overwintering plants: a tale of two activities   总被引:1,自引:0,他引:1  
Antifreeze proteins are found in a wide range of overwintering plants where they inhibit the growth and recrystallization of ice that forms in intercellular spaces. Unlike antifreeze proteins found in fish and insects, plant antifreeze proteins have multiple, hydrophilic ice-binding domains. Surprisingly, antifreeze proteins from plants are homologous to pathogenesis-related proteins and also provide protection against psychrophilic pathogens. In winter rye (Secale cereale), antifreeze proteins accumulate in response to cold, short daylength, dehydration and ethylene, but not pathogens. Transferring single genes encoding antifreeze proteins to freezing-sensitive plants lowered their freezing temperatures by approximately 1 degrees C. Genes encoding dual-function plant antifreeze proteins are excellent models for use in evolutionary studies to determine how genes acquire new expression patterns and how proteins acquire new activities.  相似文献   

10.
Protein interaction with ice.   总被引:3,自引:0,他引:3  
Many organisms have evolved novel mechanisms to minimize freezing injury due to extracellular ice formation. This article reviews our present knowledge on the structure and mode of action of two types of proteins capable of ice interaction. The antifreeze proteins inhibit ice crystal formation and alter ice growth habits. The ice nucleation proteins, on the other hand, provide a proper template to stimulate ice growth. The potential applications of these proteins in different industries are discussed.  相似文献   

11.
Antifreeze proteins differentially affect model membranes during freezing   总被引:6,自引:0,他引:6  
Over the past decade antifreeze proteins from polar fish have been shown either to stabilize or disrupt membrane structure during low temperature and freezing stress. However, there has been no systematic study on how membrane composition affects the interaction of antifreeze proteins with membranes under stress conditions. Therefore, it is not possible at present to predict which antifreeze proteins will protect, and which will damage a particular membrane during chilling or freezing. Here, we analyze the effects of freezing on spinach thylakoid membranes and on model membranes of varying lipid composition in the presence of antifreeze protein type I (AFP I) and specific fractions of antifreeze glycoproteins (AFGP). We find that the addition of galactolipids to phospholipid model membranes changes the effect each protein has on the membrane during freezing. However, the greatest differences observed in this study are between the different types of antifreeze proteins. We find that AFP type I and the largest molecular weight fractions of AFGP induce concentration dependent leakage from, and are fusogenic to the liposomes. This is the first report that an antifreeze protein induces membrane fusion. In contrast, the smallest fraction of AFGP offers a limited degree of protection during freezing and does not induce membrane fusion at concentrations up to 10 mg/ml.  相似文献   

12.
The recent discovery of a large hyperactive antifreeze protein in the blood plasma of winter flounder has helped explain why this fish does not freeze in icy seawater. The previously known, smaller and much less active type I antifreeze proteins cannot by themselves protect the flounder down to the freezing point of seawater. The relationship between the large and small antifreezes has yet to be established, but they do share alanine-richness (> 60%) and extensive alpha-helicity. Here we have examined two other righteye flounder species for the presence of the hyperactive antifreeze, which may have escaped prior detection because of its lability. Such a protein is indeed present in the yellowtail flounder judging by its size, amino acid composition and N-terminal sequence, along with the previously characterized type I antifreeze proteins. An ortholog is also present in American plaice based on the above criteria and its high specific antifreeze activity. This protein was purified and shown to be almost fully alpha-helical, highly asymmetrical, and susceptible to denaturation at room temperature. It is the only detectable antifreeze protein in the blood plasma of the American plaice. Because this species appears to lack the smaller type I antifreeze proteins, the latter may have evolved by descent from the larger antifreeze.  相似文献   

13.
Antifreeze proteins are a structurally diverse group of proteins characterized by their unique ability to cause a separation of the melting- and growth-temperatures of ice. These proteins have evolved independently in different kinds of cold-adapted ectothermic animals, including insects and fish, where they protect against lethal freezing of the body fluids. There is a great variability in the capacity of different kinds of antifreeze proteins to evoke the antifreeze effect, but the basis of these differences is not well understood. This study reports on salt-induced enhancement of the antifreeze activity of an antifreeze protein from the longhorn beetle Rhagium inquisitor (L.). The results imply that antifreeze activity is predetermined by a steady-state distribution of the antifreeze protein between the solution and the ice surface region. The observed salt-induced enhancement of the antifreeze activity compares qualitatively and quantitatively with salt-induced lowering of protein solubility. Thus, salts apparently enhance antifreeze activity by evoking a solubility-induced shift in the distribution pattern of the antifreeze proteins in favour of the ice. These results indicate that the solubility of antifreeze proteins in the solution surrounding the ice crystal is a fundamental physiochemical property in relation to their antifreeze potency.  相似文献   

14.
Certain plant-associating bacteria produce ice nucleation proteins (INPs) which allow the crystallization of water at high subzero temperatures. Many of these microbes are considered plant pathogens since the formed ice can damage tissues, allowing access to nutrients. Intriguingly, certain plants that host these bacteria synthesize antifreeze proteins (AFPs). Once freezing has occurred, plant AFPs likely function to inhibit the growth of large damaging ice crystals. However, we postulated that such AFPs might also serve as defensive mechanisms against bacterial-mediated ice nucleation. Recombinant AFP derived from the perennial ryegrass Lolium perenne (LpAFP) was combined with INP preparations originating from the grass epiphyte, Pseudomonas syringae. The presence of INPs had no effect on AFP activity, including thermal hysteresis and ice recrystallization inhibition. Strikingly, the ice nucleation point of the INP was depressed up to 1.9 °C in the presence of LpAFP, but a recombinant fish AFP did not lower the INP-imposed freezing point. Assays with mutant LpAFPs and the visualization of bacterially-displayed fluorescent plant AFP suggest that INP and LpAFP can interact. Thus, we postulate that in addition to controlling ice growth, plant AFPs may also function as a defensive strategy against the damaging effects of ice-nucleating bacteria.  相似文献   

15.
Wang JH 《Cryobiology》2000,41(1):1-9
During the past 10 years, it has become clear that the effects of antifreeze proteins (AFPs) on cell viability and on thermodynamic properties during low-temperature preservation are complex, even controversial. In this paper, these studies are reviewed systematically and some conclusions are drawn. It is shown that AFPs can display both protective and cytotoxic actions and both nucleation of ice and inhibition of ice crystal growth, depending on several factors; these include the specific storage protocol, the dose and type of AFP, the composition and concentration of cryoprotectant, and the features of the biological material. A novel model, incorporating some recent findings concerning these proteins, is proposed to explain this dual effect of AFPs during cryopreservation. AFP-ice complexes have some affinity interactions with cell membranes and with many other molecules present in cryopreservation solutions. When the intensity of these interactions reaches a certain level, the AFP-ice complexes may be induced to aggregate, thereby inducing ice nucleation and loss of the ability to inhibit recrystallization.  相似文献   

16.
昆虫抗冻蛋白: 规则结构适应功能   总被引:5,自引:0,他引:5  
邵强  李海峰  徐存拴 《昆虫学报》2006,49(3):491-496
抗冻蛋白在环境温度低于体液熔点时能够结合到生物体内的冰核表面,通过限制冰核生长和抑制冰晶重结晶而保护有机体免受结冰引起的伤害。与其他生物抗冻蛋白比较,昆虫抗冻蛋白有很强的活性,结构上具有显著特征,如一级结构规律重复,超二级结构为β-螺旋,可与冰晶发生相互作用,具有TXT基序等。该文综述了近年来关于昆虫抗冻蛋白的结构以及分子生物学等方面研究的新进展,讨论了其结构与功能的关系。  相似文献   

17.
Most monocotyledons like cereals accumulate antifreeze proteins in the apoplast during cold acclimation, but it is still uncertain whether dicotyledons do. Here we report the isolation and characterisation of a 33-kD apoplastic chitinase extracted from the corolla of wintersweet (Chinmonanthus praecox communis L.), which was purified using successive column chromatography on Phenyl-Sepharose, DEAE-Sepharose, and CM-Sepharose. Antifreezing activity of chitinase was confirmed in terms of the formation of bipyramidal ice crystals and high thermal-hysteresis values. Interestingly, chitinase was also found to affect germination of fungal spores of four major plant pathogens. From these data, we hypothesize that, under natural conditions, wintersweet as one of the overwintering dicotyledons also accumulates apoplastic antifreeze proteins like monocotyledons. To our knowledge, this is the first report on the isolation of dicotyledon apoplastic chitinase with high-level antifreeze and antifungal activities.  相似文献   

18.
Using synthetic DNA, we assembled a gene encoding a protein identical in sequence to one of the antifreeze proteins produced by the fish Pseudopleuronectes americanus (winter flounder). To address the relationship between structure and function, we also assembled genes encoding proteins varying in sequence and length. The synthetic genes were cloned into a bacterial expression vector to generate translational fusions to the 3' end of a truncated staphylococcal protein A gene; the chimeric proteins encoded by these fusions, varying only in their antifreeze domains, were isolated from Escherichia coli. The antifreeze domains conferred the ability to inhibit ice recrystallization, which is characteristic of naturally occurring antifreeze proteins, on the chimeric proteins. The chimeric proteins varied in their effectiveness of inhibiting ice recrystallization according to the number of 11-amino acid repeats present in the antifreeze moiety. A protein with only two repeats lacked activity, while the inhibitory activity increased progressively for proteins containing three, four, and five repeats. Some activity was lost upon removal of either the salt bridge or the carboxyl-terminal arginine, but surprisingly, not when both features were absent together.  相似文献   

19.
Control of ice formation is crucial in cryopreservation of biological substances. Successful vitrification using several additives that inhibit ice nucleation in vitrification solutions has previously been reported. Among these additives, here we focused on a synthetic polymer, poly(vinyl alcohol) (PVA), and investigated the effects of PVA on nucleation and growth of ice in 35% (w/w) aqueous 1,2-propanediol solution by using a differential scanning calorimetry (DSC) system equipped with a cryomicroscope. First, the freezing temperature of the solution was measured using the DSC system, and then the change in ice fraction in the solution during cooling was evaluated based on images obtained using the cryomicroscope, at different concentrations of PVA between 0% and 3% (w/w). Based on the ice fraction, the change in residual solution concentration during cooling was also evaluated and then plotted on the state diagram of aqueous 1,2-propanediol solution. Results indicated that, when the partially glassy and partially frozen state was intentionally allowed, the addition of PVA effectively inhibited not only ice nucleation but also ice growth in the vitrification solution. The effect of PVA on ice growth in the vitrification solution was explained based on kinetic limitations mainly due to mass transport. The interfacial kinetics also might limit ice growth in the vitrification solution only when the ice growth rate decreased below a critical value. This coincides with the fact that PVA exhibits a unique antifreeze activity in the same manner as antifreeze proteins when ice growth rate is lower than a critical value.  相似文献   

20.
Transgenic Arabidopsis thaliana plants which express genes encoding insect, Dendroides canadensis, antifreeze proteins (AFP) were produced by Agrobacterium-mediated transformation. The antifreeze protein genes, both with and without the signal peptide sequence (for protein secretion), were expressed in transformed plants. Thermal hysteresis activity (indicating the presence of active AFPs) was present in protein extracts from plants expressing both proteins and was also detected in leaf apoplast fluid from plants expressing AFPs with the signal peptide. Transgenic lines did not demonstrate improved ability to survive freezing when compared to wild-type. However, when cooled under four different regimes, transgenic lines with AFPs in the apoplast fluid froze at significantly lower temperatures than did wild-type, especially in the absence of extrinsic nucleation events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号