首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The behavior of early (June–July) and late (August–September) migrating, adult Atlantic salmon, in The River Klarälven, Sweden, was analyzed using radio telemetry. River Klarälven is a regulated river without functioning fishways, instead upstream migrating salmon are trapped and trucked past eight hydropower plants before released back to the river. We distinguished two parts of the spawning migration, that is, one part being the migration from the place where the fish was released to the spawning grounds. The other part was a holding phase on the spawning grounds with little or no movements before spawning. The late salmon spent less of their total time on holding, 36.2%, and more on migration, 63.8%, compared with early migrating salmon, which distributed their time rather evenly between migration, 47.5%, and holding, 52.5%. In total, early salmon used 30% more time migrating and 156% more time holding than late salmon. Some Atlantic salmon (Salmo salar) fell back over the hydropower plant after release and got excluded from spawning. The fallback rates of transported, tagged spawners were higher in the early than in the late group in both years. The fallback rate in 2012 was 42.8% of the early group and 15.1% in the late. In 2013, there were 51.7 % fallbacks in the early group and 3.4% in the late. The salmon fell back on average 9 days after being released in 2012 and 16 days in 2013. A high mean daily discharge on the day of release increased the probability of becoming a fallback. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Repeat salmonid spawners may make large contributions to total recruitment and long term population stability. Despite their potential importance, relatively little is known about this phase of the life history for anadromous populations, and nothing has been reported for landlocked populations. Here, we studied post‐spawning behaviour and survival of landlocked Atlantic salmon in relation to downstream dam passage in the River Klarälven, Sweden. Eight hydropower stations separate the feeding grounds in Lake Vänern from the spawning grounds in the River Klarälven, and no measures to facilitate downstream migration are present in the river. Forty‐nine percent of the salmon survived spawning and initiated downstream migration. Females and small fish had higher post‐spawning survival than males and large fish. The post‐spawners migrated downstream in autumn and spring and remained relatively inactive in the river during winter. Downstream migration speed in the free flowing part of the river was highly variable with a median of 9.30 km/day. Most fish passed the first hydropower station via upward‐opening spill gates after a median residence time in the forebay of 25 min. However, no tagged fish survived passage of all eight hydropower stations to reach Lake Vänern. This result underscores the need for remedial measures to increase the survival of downstream migrating kelts. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Relatively little is known about the downstream migration of landlocked stocks of Atlantic salmon Salmo salar L. smolts, as earlier migration studies have generally focused on upstream migration. However, in watersheds with many hydroelectric plants (HEPs), multiplicative loss of downstream‐migrating salmon smolts can be high, contributing to population declines or extirpations. Here we report the results from a study of wild landlocked Atlantic salmon smolts in the River Klarälven. Salmon smolts, tagged with acoustic transmitters, were released at different locations and followed as they passed 37 receivers along a 180‐km‐long river segment, including eight dams as well as free‐flowing control stretches. We found that 16% of the smolts successfully migrated along the entire river segment. Most losses occurred during HEP passages, with 76% of the smolts being lost during these passages, which contrasts with the 8% smolt loss along unregulated control stretches. Migration speed was 83% slower along regulated stretches than along unregulated stretches. The observed lower migration speed at regulated stretches was dependent on fish size, with large fish moving slower than small fish. Discharge affected migration speed but not losses. As previously shown for anadromous populations, our study of landlocked salmon demonstrates similar negative effects of multiple passages of HEPs by downstream‐migrating smolts. On the basis of this and previous migration studies, we advocate using a holistic approach in the management and conservation of migratory fish in regulated rivers, which includes safe passage for both upstream‐ and downstream‐migrating fish. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
The evolutionary effects of harvest on wild fish populations have been documented around the world; however, sublethal selective pressures can also cause evolutionary changes in phenotypes. For migratory fishes, passage facilities may represent instances of nonlethal selective pressure. Our analysis of 6 years of passage data suggests that certain fish passage facilities on the Penobscot River have been exerting selective pressure against large‐bodied, anadromous Atlantic salmon (Salmo salar). At the second and third dams in the river, a 91‐cm salmon was 21%–27% and 12%–16% less likely to pass than a 45‐cm salmon, respectively. Fish size positively influences egg survival and number and is a heritable trait. Therefore, in a wild‐reproducing population, exclusion of large fish from spawning areas may have population‐level impacts. In the Penobscot River, most returning adults derive from a hatchery program that collects its broodstock after passing the first dam in the river. Analysis of fork lengths of salmon returning to the Penobscot River from 1978 to 2012 provided mixed support for evolution of size at maturity in different age classes in a pattern that may be expected from interactions with conservation hatchery operations. Additionally, slow‐maturing and iteroparous individuals that represent the largest salmon size classes were essentially lost from the population during that time, and Penobscot River fish have shorter fork lengths at maturity than Atlantic salmon in undammed systems.  相似文献   

5.
In a restored, third‐order stream in northern Nova Scotia, Canada, we used redd counts over 12 years to examine the influence of beaver dams and the timing and intensity of autumn rains on spawning activity of Atlantic salmon. Most beaver dams in most years had no detectable effect on the distribution of spawning redds, but in 2004 the density of redds downstream from a three‐dam complex was significantly greater than that above, suggesting the dams were a barrier to many fish. A second complex of dams blocked salmon passage completely in 2003 and 2004 until they were notched to provide access upstream. The length of stream used by salmon for spawning was linearly correlated with total precipitation in the basin in October plus November (R2 = 0.60), to a ceiling of 325 mm, above which the fish had access to the entire brook, if beaver dams were notched. Number of redds in the whole brook was strongly correlated (R2 = 0.94) with the coefficient of variation (CV) of daily rainfall in October, but only for 7 of 11 years. This relationship disappeared when the impassable beaver dam complex failed in 2005, allowing salmon free access to 4 km of the upper brook. Variation in rainfall, and hence discharge, in this flashy brook evidently influences migration and spawning of Atlantic salmon in conjunction with channel blocking by beaver dams. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Effective dam management requires an understanding of the ecological impact of a facility and its operations on individual fish and fish populations. Traversing high flows downstream of dams is an energetically challenging activity that could influence survival and spawning success following passage. Carryover effects, however, are an underappreciated consequence of dam passage that have been overlooked by researchers and natural resource managers. We conducted a large‐scale management experiment to determine if the operation of dam attraction flows could be changed to reduce high sockeye salmon Oncorhynchus nerka mortality following passage and increase spawning success. We tested two flow conditions: (i) a baseline condition—currently used by managers—that released high attraction flows directly adjacent to the entrance to a vertical‐slot fishway and (ii) an alternative condition that released attraction flows 10 m away from the fishway entrance to reduce the flows fish swim through while approaching the passage structure. We tagged 637 sockeye salmon with telemetry tags to monitor dam passage, post‐passage survival to spawning grounds and spawning success under the two flow conditions. Validated fish counters at the exit of the fishway and on spawning grounds were used to generate population level estimates of survival to spawning grounds. Individuals exposed to baseline flow conditions spent two times longer recovering from dam passage and exhibited 10% higher mortality following passage than those exposed to alternative flows. Release of alternative flows for 10 days assisted approximately 550 fish (or 3% of total spawners) in reaching spawning grounds. Once on spawning grounds, female spawning success was strongly influenced by individual spawning characteristics (longevity and date of arrival on spawning grounds) and not dam flow condition. Our findings highlight a cost‐effective solution that decreases mortality following passage simply by altering the location of dam flow releases and not reductions in discharge. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
The survival rates of three groups of seaward‐migrating Salmo salar smolts were investigated in 2005, 2016, and 2017 in the River Skjern and River Omme, as well as in the Ringkøbing Fjord using acoustic telemetry. Ringkøbing Fjord extends for approximately 300 km2, and has a narrow, regulated outlet to the sea. Smolts of three different origins: (a) wild smolts, (b) hatchery‐reared smolts previously released at half‐year‐old, and (c) hatchery‐reared smolts previously released at 1‐year‐old were captured in rotary screw traps and surgically implanted with acoustic transmitters. The progress during seaward migration was monitored with a network of automatic listening stations deployed in the river estuary, fjord mouth and sea opening. The smolts' probability of survival in the river was related to their length, with larger smolts being more likely to reach the fjord. Once in the fjord, the probability of reaching the sea was related with the smolt's group, with smolts previously released at half‐year‐old being more likely to succeed than wild smolts. However, none of the biometric or behavioural variables explained the difference between the studied smolt groups, masking the potential reasons behind this difference in survival probability. Overall, approximately 47% of the tagged smolts were registered at the last array of automatic listening stations (i.e., entered the sea), demonstrating the early migration as a critical bottleneck for the local Atlantic salmon population. Ultimately, this limits the number of Atlantic salmon that survive to adulthood and return to River Skjern and River Omme for spawning.  相似文献   

8.
The upstream migration of adult anadromous salmonids in the Columbia River Basin (CRB) has been dramatically altered and fish may be experiencing energetically costly delays at dams. To explore this notion, we estimated the energetic costs of migration and reproduction of Yakima River‐bound spring Chinook salmon Oncorhynchus tshawytscha using a sequential analysis of their proximate composition (i.e., percent water, fat, protein, and ash). Tissues (muscle, viscera, and gonad) were sampled from fish near the start of their migration (Bonneville Dam), at a mid point (Roza Dam, 510 km upstream from Bonneville Dam) and from fresh carcasses on the spawning grounds (about 100 km above Roza Dam). At Bonneville Dam, the energy reserves of these fish were remarkably high, primarily due to the high percentage of fat in the muscle (18–20%; energy content over 11 kJ g?1). The median travel time for fish from Bonneville to Roza Dam was 27 d and ranged from 18 to 42 d. Fish lost from 6 to 17% of their energy density in muscle, depending on travel time. On average, fish taking a relatively long time for migration between dams used from 5 to 8% more energy from the muscle than faster fish. From the time they passed Bonneville Dam to death, these fish, depending on gender, used 95–99% of their muscle and 73–86% of their visceral lipid stores. Also, both sexes used about 32% of their muscular and very little of their visceral protein stores. However, we were unable to relate energy use and reproductive success to migration history. Our results suggest a possible influence of the CRB hydroelectric system on adult salmonid energetics. Published in 2006 by John Wiley & Sons, Ltd.  相似文献   

9.
We evaluated the effects of a rehabilitation project, whose goal was to re‐establish longitudinal connectivity for anadromous trout in the regulated river Emån. We used a holistic approach, by tagging and following both upstream‐migrating spawners (N = 348) and downstream‐migrating smolts (N = 80) and kelts as they passed two hydroelectric plants (HEP 2‐3) with nature‐like fishways. When migrating upstream, 84–88% of the spawners stopped, primarily at spawning grounds, before reaching HEP2. The proportion of stoppers was lower (56%) for fish that had been to the fishways in previous years, indicating that the recolonization rate is likely to increase over time. Of the spawners that approached the fishway at HEP2, 77% rapidly located the fishway situated next to the tail‐race, resulting in an attraction efficiency of 81% and a passage efficiency of 95%. The time required to locate the fishway inside the former channel at HEP3 was substantial, but the attraction efficiency (89%) and passage efficiency (97%) were nevertheless high. The kelts swam downstream mainly in spring, using spill gates and the fishways, to swim past HEP2 and 3 and continue downstream to the Baltic Sea. Iteroparity was confirmed by the fact that 20% of the spawners were tagged in previous years. Smolt loss was about 30% for both HEPs, with a higher turbine‐induced loss 30% for fish passing through Francis runners than a Kaplan runner. Fifteen per cent of the tagged smolt reached the sea and none of these fish had swum through the Francis runners. It will probably take many years before longitudinal connectivity is fully re‐established in the river Emån, due to substantial losses of both upstream‐migrating spawners (35% loss) and downstream‐migrating smolts (50%) and kelts. In addition, smolt production in areas upstream of HEP3 is far below carrying capacity. Thus, additional measures that not only facilitate movement of upstream spawners, but also reduce mortality and injuries of downstream migrants are urgently needed to create a self‐sustaining fish population. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Reduced reproductive success of hatchery fish spawning in the natural environment will reduce the ability of stocking programs to enhance wild populations. We used DNA-based parentage assignment to compare the reproductive success of wild fish and first-generation hatchery fish from a smolt stocking program that used broodstock from within the naturalized steelhead Oncorhynchus mykiss population in a Minnesota tributary to Lake Superior. The reproductive success of hatchery females was significantly lower than that of wild females (approximately 60%) in all three study years; however, the reproductive success of hatchery males was only significantly lower in one year. Higher reproductive success of wild fish was attributed to greater probability of success (i.e., having at least one offspring) and not differences in numbers of offspring among successful parents. Generalized linear models indicated that run timing was associated with probability of success although this did not explain differences between hatchery and wild fish. Despite runs that extended 7–9 weeks, most successful adults arrived in the first three weeks of the run (85–98% of all successful females, 98–100% of successful males). The early part of the run corresponded to periods of high flow, which likely increased access to quality spawning and rearing habitat higher upstream in the system. Relationships between fish length and reproductive success were inconsistent. Managers may minimize potential environmental and genetic contributors to reduced performance by hatchery fish, but continued reliance on hatchery supplementation may hinder achievement of the long-term goal of a fishery supported largely by naturally reproducing populations.  相似文献   

11.
The spawning migration of Atlantic salmon has been characterized by tracking salmon carrying electronic tags as they ascend rivers, but still little is known about how natural obstacles such as waterfalls influence migratory behaviour and how such behaviours are mediated by various biotic (e.g., fish size) and abiotic (e.g., discharge, water temperature, and barometric pressure) factors. The Norwegian river Numedalslågen is interrupted by natural waterfalls ranging in height from 2 to 6 m. We tagged 113 Atlantic salmon with radio transmitters in the estuary and used stationary radio telemetry stations to track fish. Ninety‐one salmon were recorded in Numedalslågen, 39 of which remained in the river for spawning. Large salmon moved farther and faster upriver but also delayed longer and had lower daily probability to pass the second waterfall. Delay below and passage probability at the final, largest waterfall was affected by water discharge, wherein passage occurred when discharge was declining. Barometric pressure also influenced daily probability of ascent, albeit in opposite directions for each waterfall. Importantly, we also found that salmon with surgically implanted radio transmitters moved farther upriver on average and delayed less time below one of the waterfalls than those with externally attached transmitters. Although there is variance in timing arising from individual decision‐making, we showed that natural waterfalls delay progress of Atlantic salmon on their spawning migration and that both biotic (i.e., size) and abiotic (i.e., barometric pressure and discharge) factors influenced the salmon's decisions to pass waterfalls that they encounter.  相似文献   

12.
Hatchery ‘recycling’ programs have been used to increase angling opportunities by re‐releasing fish into a river after they returned to a hatchery or fish trap. Recycling is intended to increase opportunities for fishermen, but this strategy could affect wild fish populations if some recycled fish remain in the river and interact with wild fish populations. To quantify hatchery return and angler harvest rates of recycled steelhead, we conducted a 2‐year study on the Cowlitz River, Washington. A total of 1051 steelhead were recycled, including 218 fish that were radio‐tagged. Fates of recycled steelhead were similar between years: 48.4% returned to the hatchery, 19.2% were reported captured by anglers, and 32.4% remained in the river. A multistate model quantified the effects of covariates on hatchery return and angler harvest rates, which were positively affected by river discharge and negatively affected by time since release. However, hatchery return rates increased and angler harvest rates decreased during periods of increasing discharge. A total of 21.1% (46 fish) of the radio‐tagged steelhead failed to return to the hatchery or be reported by anglers, but nearly half of those fish (20 fish) appeared to be harvested and not reported. The remaining tagged fish (11.9% of the radio‐tagged population) were monitored into the spawning period, but only five fish (2.3% of the radio‐tagged population) entered tributaries where wild steelhead spawning occurs. Future research focused on straying behaviour, and spawning success of recycled steelhead may further advance the understanding of the effects of recycling as a management strategy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Condit Dam is one of the largest hydroelectric dams ever removed in the USA. Breached in a single explosive event in October 2011, hundreds‐of‐thousands of cubic metres of sediment washed down the White Salmon River onto spawning grounds of a threatened species, Columbia River tule fall Chinook salmon Oncorhynchus tshawytscha. We investigated over a 3‐year period (2010–2012) how dam breaching affected channel morphology, river hydraulics, sediment composition and tule fall Chinook salmon (hereafter ‘tule salmon’) spawning habitat in the lower 1.7 km of the White Salmon River (project area). As expected, dam breaching dramatically affected channel morphology and spawning habitat due to a large load of sediment released from Northwestern Lake. Forty‐two per cent of the project area that was previously covered in water was converted into islands or new shoreline, while a large pool near the mouth filled with sediments and a delta formed at the mouth. A two‐dimensional hydrodynamic model revealed that pool area decreased 68.7% in the project area, while glides and riffles increased 659% and 530%, respectively. A spatially explicit habitat model found the mean probability of spawning habitat increased 46.2% after dam breaching due to an increase in glides and riffles. Shifting channels and bank instability continue to negatively affect some spawning habitat as sediments continue to wash downstream from former Northwestern Lake, but 300 m of new spawning habitat (river kilometre 0.6 to 0.9) that formed immediately post‐breach has persisted into 2015. Less than 10% of tule salmon have spawned upstream of the former dam site to date, but the run sizes appear healthy and stable. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

14.
A 1‐km reach of Brierly Brook, Nova Scotia, was studied from 1995 to 2004 to determine if the addition of artificial structures mimicking large woody debris could enhance Atlantic salmon populations. In 1995, digger logs (which mimic fallen trees) and deflectors (which narrow the channel) were constructed in a 250‐m section of the brook devoid of woody debris (Old Restored Site). In 2003, 5 more digger logs and defectors were built in a previously unrestored section of the stream (New Restored Site). A third control site was left unchanged. Physical changes caused by the structures were monitored at the New Restored Site. Densities of juvenile and spawning Atlantic salmon were also monitored. At all sites, woody debris structures in the brook were important and effective in creating complex salmonid habitat. The structures narrowed the channel, scoured pools and undercut banks. They created habitat that parr used for summer and winter refuge and adult spawners used for cover and resting during upstream migration and spawning. The structures caused gravels to accumulate that spawning adults used to build redds and fry used for shelter. The reaches with structures had higher spawning densities than reaches without them; spawning increased in the New Restored Site relative to the control site. The absence of woody debris may be a bottleneck for salmonid populations in streams of the Atlantic Northeast. For streams with a small or immature riparian zone and little woody debris in the channel, woody structures may be an effective tool for restoring salmonid populations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
At times, total dissolved gas concentrations in the Columbia and Snake rivers have been elevated due to involuntary spill from high spring runoff and voluntary spill used as a method to pass juvenile salmonids over dams. The goal of this project was to determine if acute exposure to total dissolved gas supersaturation (TDGS) affects the reproductive performance of female chinook salmon late in their maturation. During this study, adult female spring chinook salmon were exposed to mean TDGS levels of 114.1% to 125.5%. We ended exposures at first mortality, or at the appearance of impending death. Based on this criterion, exposures lasted from 10 to 68 h and were inversely related to TDGS. There was no effect of TDGS on pre‐spawning mortality or fecundity when comparing treatment fish to experimental controls or the general hatchery population four to six weeks after exposures. Egg quality, based on egg weight and egg diameter, did not differ between treatment and control fish. Fertilization rate and survival to eyed‐stage was high ( > 94%) for all groups. With the exception of Renibacterium salmoninarum (the causative agent of bacterial kidney disease; BKD), no viral or bacterial fish pathogens were isolated from experimental fish. The prevalence (about 45%) and severity of R. salmoninarum did not differ among the groups or the general hatchery population. We conclude that these acute exposures to moderate levels of gas‐supersaturated water—perhaps similar to that experienced by immigrating adult salmon as they approach and pass a hydropower dam on the Columbia River—did not affect reproductive success of female chinook salmon late in their maturation. These results are most applicable to summer and fall chinook salmon, which migrate in the summer/fall and spawn shortly after reaching their natal streams. Published in 2004 by John Wiley & Sons, Ltd.  相似文献   

16.
Population attributes and migratory dynamics of spawning pink salmon Oncorhynchus gorbuscha were examined in U.S. waters of the St. Marys River from 1998 through 2002. Spawning migrations were monitored twice each week from late August through early October of each sampling year using a single gill net set immediately below their spawning grounds. Pink salmon were captured between 23 August and 11 October, with the peak migration event in all years occurring between 10 and 22 September. Catch-per-unit-effort was greater in even years (57 fish/night) than in odd years (30 fish/night). Water temperature during spawning migrations ranged from 11.4 to 21.4°C, with nearly 90% of fish captured between 15.0 and 19.7°C. The proportion of females captured (mean = 0.25; range, 0.09 to 0.35) declined after the peak-migration event, with few females caught during October. Total length and wet weight of male and female fish displayed much variability within and among years. Relative condition of male pink salmon declined over the spawning migration, with a sharp decline observed after peak migration events. Pink salmon representing ages 2 through 4 were captured during the study period, with a large percentage (range, 14.6 to 50.6%) of these fish deviating from their usual two-year life cycle. These are the first reported age-3 pink salmon from a Lake Huron tributary and first age-4 fish observed in any freshwater or marine system. Our results suggest that the naturalization of pink salmon to the upper Great Lakes has resulted in system-specific modifications to their potamodromous life history.  相似文献   

17.
Adult sockeye salmon (Oncorhynchus nerka) were studied to assess the consequences of a dam and vertical‐slot fishway on mortality during their spawning migration in the Seton–Anderson watershed, British Columbia, Canada. Since previous research suggests fishway passage may be difficult, our main hypothesis was that the dam and fishway have post‐passage consequences that affect subsequent behaviour and survival. Eighty‐seven sockeye were caught at the top of the fishway, implanted with an acoustic telemetry transmitter, non‐lethally biopsied to obtain a small blood sample and released either upstream or downstream of the dam. Indices of physiological stress (i.e. plasma cortisol, glucose, lactate and ions) indicated that fish were not stressed or exhausted after capture from the fishway, and were not unduly stressed by transportation to release sites or net‐pen holding. Of 59 fish released downstream of the dam, 14% did not reach the dam tailrace. Overall passage efficiency at the fishway was 80%. Mortality in two lakes upstream of the dam was greater in fish released downstream of the dam (27%) compared to fish released upstream of the dam (7%; p = 0.04) suggesting that dam passage has consequences that reduce subsequent survival. Cumulative mortality of fish released downstream of the dam (n = 55) resulted in only 49% survival to spawning areas, compared to 93% of fish released upstream of the dam (n = 28). Survival was significantly lower for females (40%) than for males (71%; p = 0.03), a finding that has implications for conservation because spawning success of sockeye salmon populations is governed primarily by females. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
By impeding migration and degrading habitat downstream, dam construction has caused population declines in many migratory fish populations. As part of the landlocked Atlantic salmon (Salmo salar) restoration program in Lake Champlain, the Willsboro Dam was removed from the Boquet River, NY in 2015 providing an opportunity to study the effects of dam removal on spawning habitat quality and availability. Spawning habitat surveys were conducted downstream of the dam site in 2014, 2016 and 2017, and in historical spawning grounds upstream in 2016 and 2017. The habitat used was characterized by measuring depth, water velocity, and substrate size at each redd. Mean habitat use did not differ between upstream and downstream sites for any variables in 2016 and only differed for depth in 2017. However, the variance in depth and substrate used for spawning were lower at the upstream site in 2016, likely due to an abundance of habitat. In the downstream site, the mean and variance in depth at redds decreased after dam removal as did the variance in substrate size, increasing the habitat suitability of redds. When compared to literature data, habitat used upstream of the former dam was of medium quality in both 2016 and 2017, and improved downstream from low to medium quality in both column velocity and substrate size after dam removal. This study illustrates that positive shifts in the quality of habitat used can occur rapidly following dam removal by allowing access to suitable spawning habitat upstream and improving habitat downstream.  相似文献   

19.
During October 2000 to August 2002, the River Skjern Nature Project was implemented by removing dykes and re‐meandering 20.5 km of the lower canalized river. As a consequence the length of the river stretch increased to 23 km. A lake of 250 ha developed in the river valley 5 km upstream from the river mouth because of subsiding soils caused by reclamation and drainage since the 1960s. Using radiotelemetry, the mortality of wild Atlantic salmon (Salmo salar) and brown trout (Salmo trutta) smolts in the River Skjern and its estuary was investigated prior to and after the implementation of the project. Altogether, 77 Atlantic salmon and 66 brown trout smolts were caught, tagged and released in the river upstream of the restoration project during the spring of 2000 and 2002. The in‐river smolt mortality was more than double in 2002 for both Atlantic salmon and brown trout compared with 2000. This was primarily due to bird predation in 2002 which was not observed in 2000. The in‐river bird predation in 2002 was mediated by the new lake, which quickly became an important bird rest area. Estuarine mortality mainly caused by cormorants (Phalacrocorax carbo sinensis) differed significantly between species, but was high for both Atlantic salmon (39%) and brown trout (12%) in both years of investigation. The aggregated smolt mortality in the river and in the estuary (48%) may threaten an indigenous self‐sustaining Atlantic salmon population in the River Skjern. When planning river restoration projects, caution should be used, especially where permanently flooded floodplains (lakes) develop due to subsiding soil. In situations where rivers pass directly through newly developed lakes, migratory species such as Atlantic salmon and brown trout may be severely affected due to increased exposure to predation from predatory fish and birds. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Studying fish behaviour at hydropower dams is needed to facilitate the design and improvement of fish passage solutions, but few studies have focused on Atlantic salmon kelts. Here, we used radio telemetry (n = 40, size range = 50–81 cm) and acoustic sonar to study kelt movements in the forebay as well as their dam passage survival and subsequent migration success past multiple dams. We also compare radio telemetry and acoustic sonar observations of fish behaviour and used acoustic sonar to measure the depth distribution of fish approaching the turbine intake zone. Passage success at the dam was 41%, and mortality was largely associated with turbine passage (62%). The two fish that passed via the spill gates survived and continued their downstream migration. At the dam, all but one radio‐tagged kelt approached the intake zone shortly after arrival to the forebay, and sonar data showed that approaching fish were predominantly surface oriented (72%, 88% and 96% of the observations were less than 1, 2 and 3 m deep, respectively). Turbine passage rate from the intake zone was higher at night than at day, indicating that the lack of visual cues may reduce the barrier effect of the 70‐mm conventional trash rack. Turbine passage rate also increased with increasing hydropower generation. The percentage of observed upstream movements away from the intake zone compared with the total number of observations was considerably greater in the radio telemetry data (41%) than in the sonar data (4%). Only one fish survived passage of all eight hydropower dams to reach the lake. This low‐passage survival underscores the need for remedial measures to increase the survival of migrating kelts, and the fish's surface orientation as well as their rapid approach to the intake rack should be taken into account when designing such measures. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号