首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study is to investigate the effect of ball size on grinding kinetics in a pilot scale ball mill. Six different ball media gradings were tested. Comparative tests were conducted in batch ball mill having 1.2 m diameter and 0.6 m length at constant operating condition of mill such as media mass, mill speed and input specific energy. Feed samples were ground batchwise and representative sample was taken from inside the mill for each determined grinding period. Grinding process in ball mill was modeled and the specific rate of breakage was calculated for the each test. The results indicated that the relationship between different breakage rate and particle size has a maximum for each ball size distribution. Consequently, a new equation to correlate maximum ball size and particle size at maximum breakage occurs is proposed.  相似文献   

2.
A full-scale three-compartment FLSmidth® cement grinding ball mill with dimensions of Ø3.5 × L10 operating in open circuit was sampled to analyse the grinding media effect on specific breakage rate function of particles. Size reduction performance of the ball mill was evaluated with respect to the applied grinding media size. Samples from the circuit and inside the mill were collected. Mass balance of the circuit was done using JKSimMet Steady State Mineral Processing Simulator. Specific discharge and breakage rate functions of particles were estimated using perfect mixing modeling approach (Whiten, 1972) on the basis of the proposed open circuit three-compartment ball mill model structure (Genç and Benzer, 2015). Maximum specific breakage rate was related to maximum grinding media size in the grinding compartments. An exponential correlation was found to exist between maximum grinding media size and maximum specific breakage rate. Relationship between maximum grinding media size and maximum particle size was also fitted to an exponential function. Findings indicated that, grinding performance of cylpebs applied in the third compartment did not improved the size reduction performance as compared to the grinding performance of the first and second compartment.  相似文献   

3.
Most concentrators desire to operate under optimal design configuration that guarantees high mineral recovery and low operational costs. The optimal design configurations are determined through studying the material to be milled in a laboratory mill under standard conditions. This is achieved through determining the selection and breakage function parameters and applying the mathematical simulation of the grinding process in order to optimize the size reduction process. The desired particle size is determined by the downstream processes, in our case, flotation. To this end, three mono-size classes feeds 850–600 μm, 600–425 μm and 425–300 μm of a platinum ore were ground using three different ball sizes (10, 20 and 30 mm) in a laboratory mill for the grinding times 0.5, 1, 2, 4, 8, 15 and 30 min. The data collected was used to determine breakage and some of the selection function parameters. The remaining parameters were back-calculated within the population balance model framework. The parameters were then used to obtain the product size distribution (PSD) that was later compared with the experimentally measured one. The milling kinetics for the desired size class for flotation was also simulated.There was a good match between the predicted and the experimentally measured PSD. The results of the milling done for further 60, 90, 120 and 240 min to validate the simulated milling kinetics from the determined parameters also showed good match between the simulated and the experimental one. This further confirms the validity of the determined parameters. From this, it becomes possible to determine the grinding conditions for optimal flotation.  相似文献   

4.
《Minerals Engineering》2006,19(13):1377-1379
Spherical balls are the dominant grinding media used in ball mills. However, balls which are initially spherical, wear into non-spherical fragments. The proportion of worn, non-spherical balls in the charge of a mill fed with 50 mm balls is dominant in ball sizes less than 30 mm. Their effects on mill performance in terms of material breakage are not yet established.The variations of specific rate of breakage with single size feed and fractional filling U, were studied for the two media shapes (spherical and worn balls). Higher breakage rates were noted with spherical media than worn balls but the differences narrow with decreasing feed size and increasing material fractional filling, U.  相似文献   

5.
Interactions among components in the heterogeneous grinding would change energy consumed characteristics of components if compared with those in the single-component breakage. In this paper, energy split phenomenon for the coarse grinding of super clean anthracite coal (SCAC)/calcite mixture of 2.8–2 mm in the ball-and-race mill is investigated. Before the analysis of experimental results, accuracy of energy split function in terms of time-dependent breakage rate is first discussed. Energy consumed characteristics of grinding in the ball mill and ball-and-race mill are also compared. Breakage model of product t10 (yield of progenies in −0.237 mm) vs specific energy is used to describe the energy-size reduction of the single-component and multi-component grinding. Interaction between components is reflected by the comparison of specific energy of components in mixture and single breakage to yield the same product t10. Based on the energy balance, energy split factors of components in different time and mixed conditions are first determined. This parameter shows no change with time. Calcite increases the grinding efficiency of SCAC significantly, with the energy split factor for SCAC ranging from 0.68 to 0.73, which means less specific energy is consumed by SCAC to yield the same t10 if compared with the single breakage. As the volumetric ratio of calcite increases in mixture, grinding energy efficiency decreases and energy split factor of calcite increases from 1.70 to 1.83. Soft material reduces the grinding energy efficiency of hard one in the multi-component breakage.  相似文献   

6.
Stirred mills are primarily used for fine and ultra-fine grinding. They dominate these grinding applications because greater stress intensity can be delivered in stirred mills and they can achieve better energy efficiency than ball mills in fine and ultra-fine grinding. Investigations were conducted on whether the greater performance of stirred mills over ball mills in fine grinding can be extended to coarse grinding applications. Four different laboratory ball mills and stirred mills have been tested to grind seven ore samples with feed sizes ranging from 3.35 mm to 150 μm. A case study on full scale operations of a 2.6 MW IsaMill replacing the existing 4 MW regrind ball mill at Kumtor Gold Mine in Kyrgyzstan is also included. This paper summarizes the major findings from these investigations.  相似文献   

7.
Low energy surface breakage has a high frequency of occurrence and thus plays a significant role in grinding processes. Yet this superficial breakage is poorly understood, measured and modelled – forming the focus of this work.Pilot mills of 0.8–1.8 m diameter, designed to provide a predominantly surface breakage environment with efficient removal of the resultant progeny, are utilised to characterise superficial breakage. A new rate, that of superficial breakage (1/(kW h/m2)), is introduced which measures fractional superficial breakage rate per energy provided to the surface of the material. This methodology is proposed as being suitable for understanding and characterising the surface breakage behaviour of ores.Tests were conducted on two ores with different hardness. Superficial breakage rates varied from 2 to 16 (1/(kW h/m2)) for the different ores and mill sizes, indicating a good sensitivity to ore type and the need to understand the applied stress – related to mill size. The results show that a single ‘surface breakage rate for use in mill modelling is incorrect as the rate of superficial breakage is dependent on the size of the mill and therefore the inter-particle stressing conditions.  相似文献   

8.
The comminution efficiency of high-pressure-grinding-rolls (HPGRs) is a well described function of a number of feed parameters including grindability, abrasion index, granulometric composition, top size and particle size distribution. Far less studied is the effect of feed moisture. This paper investigates both the overall and the specific comminution efficiency of a circuit consisting of a pilot HPGR unit followed by a batch ball mill as a function of the moisture level in the HPGR feed. Forsterite olivine sand (−7 mm) supplied by Sibelco Nordic was used as feed material. The results showed that the relationship between moisture and crushing efficiency for both the HPGR and the circuit can be described successfully by means of a parabolic function. Dry material, as well as that with the highest moisture content, showed the lowest particle size reduction ratios irrespective of the specific grinding force level. The paper also analyses the phenomenon of flake generation and shows that the feed moisture influences the flake content in the coarser size fractions of the HPGR product.  相似文献   

9.
Optimisation and better control of milling circuits require extensive modelling of milling data. This paper extends the enquiry to the use of the attainable region (AR) technique to determine the optimal residence time of ore in a ball mill. It also evaluates the energy requirements of the mill at the set residence time to maximise the production of the desired size range which enables maximum recovery of platinum group minerals (PGM) during the flotation stage.With these purposes in mind, the breakage function and the scaled-up selection function parameters were used to simulate the operating conditions required by an industrial ball mill and the power requirements were predicted using the Morrell power model. This allowed the application of the AR methodology to be extended to a full-scale ball mill. Then a link was established between residence time to mill product specifications for a given feed size.The findings showed that the residence time required by a full-scale mill falls between those at which the fully mixed and the plug flow mills operate. The results also showed that operating the ball mill at a lower mill speed and a higher ball filling saves energy. Mill speed was again found to be a key operational factor for controlling the retention time of particles inside the mill. This yielded valuable insight for the importance of optimally controlling both the residence time of the material inside the mill and the amount of energy required to maximise the desired size range, in this case −75 + 9 μm.  相似文献   

10.
The effect of high-energy milling on the surface properties of quartz is examined with regard to its preg-robbing behavior towards gold. A standard ring mill is used to process dry quartz samples, and the changes in the morphology of the particles, structural deformations and surface chemistry are investigated to explain the increased preg-robbing ability of quartz in acidic chloride solutions. The transition from fine grinding to mechanochemical activation of quartz can be observed from changes in the morphology of the particles, as well as the types of structural deformations. The transition occurs between 1 and 5 min of grinding in the mill used, corresponding to particle sizes around 0.55 μm. Structural studies differentiate two stages of fine grinding: particle breakage with limited structural disruption, and structural disturbance by mechanochemical alteration, which occurs after particles reach their grinding limits. Quartz keeps its structural order to some degree even after 30 min of aggressive grinding. The surface chemistry of ground quartz demonstrates generation of point defects including low valence silicon and non-bridging oxygen centers. These defect sites play an important role in the surface reactivity of the quartz, and influence the extent of gold loss during preg-robbing.  相似文献   

11.
Grinding of clinker for cement production is often performed in a two chamber ball mill. In the first shorter chamber, raw feed is ground using media consisting of large balls. The ground product of the first chamber exits through a discharge grate and enters the second longer chamber. Here smaller balls are used to grind the product material even finer. In this paper we analyse the charge motion, short term ball segregation processes and energy utilisation in a 4 m diameter cement ball mill using DEM. The power draw predicted is consistent with the rated power of the mill. The energy dissipation in the mill is dominated by shear interaction. The gentle liner profiles ensure that few balls move on cataracting trajectories. The distribution of energy utilisation between the different size media fractions is explored as are differences in the collisional environment between the two mill chambers.  相似文献   

12.
Breakage rates of coarse particles in ball mills generally follow non-first-order kinetics and the distribution products from batch milling are often characterized by significant contributions of abrasion besides breakage by impact, which are not well described using traditional size–mass balance formulations. Under such conditions, particles are often subject to impacts of insufficient magnitude to produce breakage in each stressing event, so that they are broken by a combination of abrasion and impact and also particles undergo weakening due to unsuccessful stressing events. The paper presents a mathematical model of batch grinding which takes into account the distribution of stressing energies in the mill, the distribution of fracture energies of particles contained in the charge, describing breakage by impacts from grinding media producing catastrophic breakage, abrasion and weakening from repeated impacts. The model has been applied to describe the rate of disappearance of two materials in batch grinding with good results.  相似文献   

13.
Platinum concentrator plants experience significant losses in their overall Platinum Group Elements (PGE) recoveries due to the inefficiencies of their secondary grinding circuits. This study involves an investigation of selective grinding of the platinum-bearing silicate particles present in UG-2 platinum ores found in the Bushveld Igneous Complex (BIC).Batch-scale laboratory test work was done to investigate the effect of a secondary milling circuit configuration, using a hydrocyclone underflow sample from a UG-2 concentrator plant as feed material. The envisaged secondary milling circuit consists of a conventional hydrocyclone to de-slime the feed followed by density separation with a spiral concentrator to separate the ore into lights (silicates-rich) and heavies (chromite-rich) fractions, followed by separate milling of the two fractions in parallel ball mills, and combined rougher flotation. A full-scale spiral was run in batch mode, followed by separate milling of samples in a 200 mm diameter mill and combined flotation in a 4.2 l cell. The milling energy inputs were re-distributed between the lights and heavies mills to determine the effect on the platinum mineral rougher flotation recovery and the Cr entrainment.The most promising results were found with 88% of the energy input to the lights mill and 12% to the heavies mill. The results indicated that under batch conditions, the secondary rougher flotation recovery (69% 4E) was similar to the conventional mill-float circuit (70%) however the Cr entrainment was significantly reduced by approximately 40% (2.3–1.4% Cr).This test work has confirmed the benefit of separate milling in the secondary milling circuit for a UG-2 ore. Spiral concentrators have shown potential as an effective density separating device to produce a silicate-rich and chromite-rich fraction for milling; further test work will be conducted to confirm its viability on an industrial scale.  相似文献   

14.
The objective of this study is to determine how grinding conditions affect the breakage rate with respect to the sample mass, major elements, and minerals present in siliceous goethitic (SG) nickel laterite. This information is helpful in determining the optimal grinding conditions for selective comminution and nickel upgrade. The kinetics of batch wet grinding of nickel laterites with feed sizes of 2.38–1.68, 1.68–1.18, 1.18–0.85, 0.85–0.6, 0.6–0.42, 0.42–0.3, 0.3–0.21, and 0.21–0.15 mm were determined using a Netzsch LME4 stirred mill under the following conditions: 1000 rpm, 50% charge volume, 150.0 g of solid. The grinding behaviour of the majority of the feed samples was non-first-order due to the fast breakage rate of soft minerals and the low breakage rate of hard minerals in the feed. Therefore, an enrichment of the soft mineral was obtained in the underscreen product by selective grinding. The effect of selective grinding on Ni upgrade was evaluated by looking at grinding time, feed size, and product size. Optimum grinding time with respect to Ni upgrade was 0.25 min for SG nickel laterite samples. Generally, grinding larger particles and/or collecting finer product size yielded better Ni upgrade results. The effect of selective grinding was evaluated by the changes of the major soft and hard minerals for the selected samples. Selective grinding was also examined with respect to the major element weight ratio (e.g. Si/Ni for SG nickel laterite). With respect to Ni upgrade, the best result was achieved from the 1.18–0.85 mm feed on the −400 mesh product after grinding for 0.25 min. The Ni grade increased from 0.73% to 1.30% (upgrade 76.8%), with 14.4% Ni recovery; the Mg grade increased from 1.30% to 3.96% (upgrade 205.6%); the Si grade decreased from 28.7% to 16.2%.  相似文献   

15.
《Minerals Engineering》2006,19(10):1005-1012
The kinematic data resulting from 3D particle tracking experiments of a typical bulk charge particle is used to derive an empirical power model that forms the basis for comparison between the DEM and experiment. The model is derived from the center of circulation coordinates and given as a function of mill speed. The wide range of milling configurations coupled with experimental trajectory data accurate to within 0.15 mm in spatial resolution ensure that the comparisons are robust. The power prediction from both the DEM and experiment is done for a 142 mm diameter mill of the same length and charged with 4596 particles with a mean diameter of 6.1 mm.  相似文献   

16.
17.
《Minerals Engineering》2007,20(7):701-709
The influences of wet ultra-fine grinding parameters on the rheological behavior of pyrite–heptane slurry in a laboratory stirred media mill were investigated with solid concentration, dispersant dosage, grinding time and carbon numbers of organic acid as dispersant. The results reveal that when the solids concentration is increased from 64 wt% to 79 wt%, the rheological behavior of slurry with 1 wt% of stearic acid transforms from Bingham characteristic to the pseudoplastic one with a yield stress. The Casson model fits well for the experimental data. And the apparent viscosity of the pyrite–heptane slurry increases exponentially with increase solid concentration at a given shear rate. The increase of viscosity is propitious to reduce the particle size of pyrite. When the solid concentration is 64 wt%, stearic acid is superior to octadecanol for the reduction of the slurry viscosity, and the slurry with 1 wt% of stearic acid possesses the best flowability. The extrapolated Bingham yield stress with dispersant almost stays constant when the dosage is over 2 wt%. Besides, the rheological behavior and particle size are also related to the grinding time and carbon numbers of organic acids as dispersant.  相似文献   

18.
《Minerals Engineering》2007,20(4):327-333
The agitated media mill MaxxMill® has successfully been used for several years by a number of customers worldwide in mono-product and multi-product production plants for the fine and ultrafine dry grinding of mineral raw materials. The special construction principle of the MaxxMill® featuring a rotating grinding chamber and one or several eccentrically positioned agitators in combination with a static hollow flow deflector, allows, apart from effective grinding, also unproblematic material supply and material removal from the mill, without requiring additional equipment for handling the grinding media. The mill is usually operated in connection with dynamic air classifiers from different manufacturers, so that the desired maximum particle size can be accurately adjusted down to 97% < 3 μm. Depending on the grinding task, different air classifiers are selected, which are used with different plant concepts, i.e. in open and closed grinding circuits and with or without pre-classification of pre-ground raw materials. Thus the MaxxMill® concept allows energy-efficient and cost effective production of fine and ultrafine products, yielding a throughput rate of up to several tons per hour.  相似文献   

19.
A conventional cement grinding circuit is composed of a two compartment tube mill, a mill filter which collects the fine material inside the mill and a dynamic air separator where final product with required fineness is collected. In general the material fed to the circuit has a top size of 50 mm which is very coarse for the ball mill. For this purpose, later in 1980s, high pressure grinding rolls (HPGR) has found applications as a pregrinder which increased throughput of the grinding circuit at the same fineness.In early applications, HPGR was operated in open circuit. But later as the operating principle of the equipment based on the compression, some portion of the HPGR discharge recycled back to improve efficiency of the mill or operated closed circuit with classifiers. Within this study effect of open and closed circuit HPGR applications on dry grinding circuit performance was examined. For this purpose sampling studies around three different cement grinding circuit were completed. In the first study, a circuit including open circuit HPGR, ball mill and air separator was sampled and chosen as the basic condition. As the final product size distribution is important for grinding circuit, model structure of each equipment was developed. The second and third surveys were carried out around closed circuit HPGR operation with V and VSK separator to develop models for the separators. Finally the separator models were used in basic condition to simulate closed circuit HPGR application.It was understood from the studies that closed circuit HPGR operation improved the overall circuit efficiency at the same final product fineness by reducing the specific energy consumption.  相似文献   

20.
《Minerals Engineering》2006,19(2):130-139
In this study, the performance evaluation studies in five cement grinding circuits, in which HPGR is used in various configurations, were presented. Sampling surveys were performed around the circuits followed by the determination of the size distribution of the samples down to 1.8 μm using a combination of sieving and laser sizing methods. The results showed that the specific energy consumption of the circuit decreases as the size reduction achieved by the HPGR increases. As given in the case studies when the size reduction ratio (F80/P80) changed from 308.2 to 4.4, the specific energy consumption of the HPGR was 8.02 and 4.05 kWh/ton, respectively. Since various configurations offer rather different ball mill feeds, the best usage of HPGR could be attained by optimization of operating parameters of both ball mills and air classifiers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号