首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
针对复合螺旋磨粒流加工效果的研究,提出考虑加工件与复合螺旋磨粒流的螺旋块之间的间隙对磨粒流的加工效果影响,建立不同间隙的螺旋流道的有限元模型,计算分析在不同间隙的条件下复合螺旋流场的特性(压力、湍流强度等)。结果表明:在三种设置值(1mm,1.5mm,2mm)比较结果下,间隙为1.5mm时,流场的综合特性表现得最好。该文还基于螺旋块不同转速对加工效果的影响进行了实验研究,结果表明:螺旋块在一定的转速下,能有效提高复合螺旋磨粒流的加工效果。  相似文献   

2.
为实现长窄型薄壁叶片的套料电解加工,设计了电解液沿叶片轮廓四周进液的流动方式,开展了导流式出液和开放式出液的仿真对比分析,结果表明,导流式出液可以明显改善加工区域内流场的均匀性。开展了薄壁叶片套料电解加工试验研究,在进给速度1.4 mm/min下实现了薄壁叶片的套型加工,轮毂表面粗糙度从0.532 μm 降低至0.307 μm,叶片型面粗糙度从0.816 μm 降低至0.583 μm。  相似文献   

3.
在高速电弧放电加工方法的基础上提出一种用于加工连续曲面、直纹面等的新型加工工艺——侧铣式高速电弧放电加工方法。与其他利用电弧进行加工的工艺方法相比,侧铣式高速电弧放电加工主要利用电极的侧面进行电弧蚀除加工,可用于加工各种复杂曲面和曲率半径较大的型腔及沟槽、流道等。侧铣电极采用侧面周边及底面多孔结构,能够实现极间的强化内冲液,在电极旋转运动的配合下,可有效控制电弧进而达到高效去除材料的目的。为了深入研究流场对侧铣式高速电弧放电加工效果的影响,建立了加工过程的极间流场模型,仿真并分析了侧铣电极在不同冲液孔分布及冲液入口压力下的极间流场。分析及进一步的工艺试验结果皆表明,在冲液入口压力为1.6 MPa时,在保证电极结构强度的条件下,增加电极的周向孔数,可以实现极间工作液的充分流动,使流场分布更均匀,从而改善电弧放电状态,可以获得较好加工效果。试验表明,在峰值电流400 A时,侧铣式高速电弧放电加工Cr12模具钢的材料去除率可以达到4 095 mm~3/min,相对电极损耗率为2.5%。最后,采用侧铣式高速电弧放电加工方法进行了连续曲面及涡轮叶片特征流道加工的可行性验证。  相似文献   

4.
正项目负责人:徐正扬(E-mail:xuzhy@nuaa.edu.cn)依托单位:南京航空航天大学项目批准号:510051191.项目简介整体叶盘/叶片等复杂曲面构件是航空发动机中最为重要的零部件,其型面扭曲、结构复杂、材料难加工、精度要求高,对制造技术提出了很高要求。电解加工技术是制造难加工材料复杂曲面构件的主要制造方法,其中流场问题是电解加工技术的核心环节。本项目针对整体叶盘/叶片等复杂曲面零部件的电解加工技术开展研究,重点研究复杂曲面电解加工的流场问  相似文献   

5.
本文主要阐述了涡轮增压器整体叶轮的逆向造型设计和五轴加工仿真技术,应用cimatronE8.5对超薄大扭曲叶片及复杂流道进行了加工工艺分析和五轴的仿真,提出了更加合理的流道多行开粗铣削方法,为复杂的整体叶轮加工提供了具有实际意义的方法。  相似文献   

6.
赵晗  范庆明 《机械制造》2020,58(3):65-70
涡轮叶片是航空发动机中的重要零件,主要加工方式是电解加工。基于电解加工流场理论,建立涡轮叶片的三维模型和电解加工的流场模型。应用COMSOL Multiphysics软件对涡轮叶片电解加工进行流场仿真分析,研究流场的分布及特性,分析不同加工间隙和不同电解液压力对流场的影响。通过分析,得出涡轮叶片电解加工时加工间隙、电解液压力与流场流速之间的关系。  相似文献   

7.
电解加工作为整体构件制造的主要技术之一,其流场设计的合理性将严重影响电解加工过程的稳定性、加工效率和质量。针对航天发动机叶片式扩压器设计了部分阻隔式反W型流场,并开展了与侧流式和反W型流场的仿真比较。仿真结果表明,该流场方式可以保证加工区电解液的高速流动,并能有效避免进/排气边漏液现象。最后,在部分阻隔式反W型流场中开展了叶片式扩压器电解加工试验,在阴极进给速度为0.5 mm/min时加工出了扩压器叶片,验证了流场设计的合理性。  相似文献   

8.
研究了电壁炉用扭曲叶片(扭曲角90°)贯流风机的三维内部流场,数值研究了不同结构参数(蜗壳间隙、蜗舌间隙、叶片内圆周角、叶片外圆周角、叶片数和叶轮内外径之比)对贯流风机性能(出风口体积流率)的影响,从而得到贯流风机叶轮在一定转速下,使风机性能最优的结构参数。同时实验测试了90°扭曲角叶片贯流风机出风口平均风速值,并且和理论计算结果基本吻合。以上为贯流风机优化设计提供了重要的参考。  相似文献   

9.
电解加工是航空发动机整体叶盘制造的主要技术之一,加工间隙内电解液流动的均匀性是影响加工稳定性和表面粗糙度的核心因素。针对叶栅通道电解加工,对比分析电解液侧流式下的正向流动与反向流动加工间隙内流场状态,通过数值仿真对比分析可知,正流方式下加工间隙内电解液流速较高,流场均匀性较好,故正流方式有利于叶栅通道电解加工。开展了电解液正流电解加工试验,结果表明,采用正流方式进行叶栅通道电解加工,轮毂粗糙度可达0.316μm,叶盆、叶背余量重复误差分别为0.096 mm,0.103 mm,为下一步叶片型面精加工提供了良好的条件。  相似文献   

10.
本文研究介绍了ANSYS模拟分析扭曲叶片的接触加工问题,通过分析得出离心泵大扭曲叶片加工时的变形和位移。研究分析了切削参数对变形的影响,通过优化切削参数减小对薄壁叶片的加工变形问题。并通过实验加工得到了理想的加工效果,为以后变截面的扭曲复杂叶片加工提高了很好的参考意义。  相似文献   

11.
In order to improve the electrochemical machining (ECM) precision and efficiency of a closed impeller internal flow channel, the internal flow channel cathode shape and structure were optimized by gap flow field simulation. Firstly, the theoretical model and three-dimensional gap flow field simulation geometric model were set up. Next, the inter-electrode gap flow field simulation results were draw from the streamline, velocity, and pressure cloud picture. Secondly, the cathode and the frock clamp were designed according to the simulation results. Finally, the verification experiment was carried out to evaluate the cathode structure and the ECM process parameters, and the experimental results were consistent with the simulation results. The whole process is stable and no short-circuit phenomenon with the forward flow field machining pattern. The results show that the method of gap flow field simulation-assisted ECM cathode design is useful and economical for machining closed impeller internal flow channel.  相似文献   

12.
Abstract

Electrochemical trepanning process is an advanced manufacturing technology suitable for the machining of aero-engine components such as blades and diffusers. Tool-electrode (cathode) with special electrical isolation is adopted in the experimental investigations of this article using the electrochemical trepanning to produce a flow mode in which the electrolyte is supplied evenly to the blade being machined. The material removal model for these experiments is built based on the main technical principles of the ECM. For a better understanding of the electrochemical trepanning process during the machining of a blade, computer simulations were previously conducted aiming to observe the geometric shaping of the inter-electrode gap. The shaping process dynamic was analyzed and the distribution of electrical field intensity within the gap has been obtained under different feed rates of the tool-electrode relative to the blade. The profile of the cross-section of the blade was evaluated through the simulation, thus indicating that the blade’s taper angler decrease by increasing the feed rate. Also, practical experiments have been carried out, where the corresponding experimental results proved the simulation was effective. The best taper angle (0.70°) resulted from a machining condition in setting up a feed rate of 4?mm/min, whereas 3.72° was produced using 1?mm/min. Furthermore, a sector with multiple blades was electrochemically manufactured with the optimal set up of experimental parameters, being that the machining accuracy was about 0.12?mm. The application reflected that the method proposed in this article is appropriate and can be used for other complex structures in electrochemical trepanning.  相似文献   

13.
通过在理论上分析窄缝电解加工中片状电极和丝状电极对加工间隙和流场分布的影响,提出了采用小直径丝状电极提高加工精度和改善加工稳定性的方法。文中分别进行了片状电极和丝状电极之间、不同直径丝状电极之间的窄缝电解加工对比试验。结果表明,小直径丝状电极可以减小电解液流过电极丝产生的涡流死水区,改善加工区内的电解液更新和电解产物的排除,提高加工精度和加工过程的稳定性。  相似文献   

14.
具有大小双叶片的扩压器能够改善压气机的性能,在航空发动机中得到广泛应用。此类构件多采用高温合金等难切削材料制造,传统铣削加工存在刀具损耗等问题。电解加工技术具有无机械切削力、工具阴极无损耗等特点。提出一种双叶片套型电解加工的方法,基于法向流程等距的原则设计了叶间出液通道,建立了出液通道宽度递增的流道模型,开展了流场仿真研究,当出液通道的宽度为0.9 mm时,加工区域内电解液的流速分布最均匀。选择GH4169材料进行了双叶片套型电解加工的对比试验,试验结果表明,采用叶间出液的电解液流动方式,加工稳定性得到提高,阴极进给速度由0.6 mm/min提高至1.0 mm/min,材料去除速率达到1 396.5 mm3/min,叶片锥度降低至1:14.29以下,轮毂表面形貌得到改善。  相似文献   

15.
针对叶片电化学加工过程难以预测、实验参数修正周期长的问题,建立与温度相关的叶片多场耦合仿真模型,基于COMSOL Multiphysics平台对叶片电化学加工过程进行多场耦合仿真,仿真分析了不同加工电压和不同进液流量对法向平衡间隙的影响。结果表明:加工电压越大,间隙也相应增大,且间隙分布越不均匀;进液流量越大,间隙分布越均匀。采用其中一组仿真参数进行工艺实验,仿真与实验的对比结果表明,叶片轮廓曲率变化缓慢处的仿真结果和实验结果比较贴合,而轮廓曲率变化较快处的仿真值与实验值差别相对较大,但两者的变化趋势相同。  相似文献   

16.
Electrochemical machining (ECM) is an important non-conventional manufacture technology for machining workpieces with complex and thin structures. In this study, ECM is used to machine the blisk. Because the channel between two blades is narrow, the cathode must use the thin-sheet structure. In the ECM process, the cathode will bear electrolyte pressure which can cause deformation. The cathode deformation has negative influence on the machining quality and process stability. To minimize the deformation, the optimization treatment of the cathode thickness is carried out and a new electrolyte flow mode, W-shaped flow mode, is adopted to weaken the pressure. The corresponding computer simulation is applied, and the results show that the cathode deformation decreases by 17.6% and 28% by taking the above-mentioned two measures. It indicates that the new thin-sheet cathode presented in this paper is useful and the new flow mode is effective in ECM. Furthermore, the experiments are conducted using the optimal thickness electrode and W-shaped flow mode to verify the machining effects. Then the corresponding experiment is carried out, and the result shows that the optimal treatments to reduce the cathode deformation have remarkable effects.  相似文献   

17.
In this work a theoretical analysis of the ECM process of curvilinear surfaces has been presented. The purpose of this analysis is to predict the shape evolution of the machined object using: a shaping surface of small thickness (flat issue) and a blade of hydrodynamic machine (quasi-three dimensional issue). ECM modeling involves prediction of the machined surface shape evolution and distribution of physical-chemical parameters inside the interelectrode gap. The problem has been solved with the use of an equation of the electrolyte and hydrogen mixture (liquid and gas) flat flow inside the interelectrode gap. After introducing simplifying assumptions for the flow, void fraction distribution and the gap thickness, the equations were solved partly analytically, partly numerically. The obtained solutions for assigned parameters of the machining process are presented graphically in the form of distributions of: static pressure, the mixture flow rate, temperature, void fraction and evolution of the machined surface shape evolution.  相似文献   

18.
ELECTROCHEMICAL MACHINING OF CURVILINEAR SURFACES   总被引:1,自引:0,他引:1  
In this work a theoretical analysis of the ECM process of curvilinear surfaces has been presented. The purpose of this analysis is to predict the shape evolution of the machined object using: a shaping surface of small thickness (flat issue) and a blade of hydrodynamic machine (quasi-three dimensional issue). ECM modeling involves prediction of the machined surface shape evolution and distribution of physical-chemical parameters inside the interelectrode gap. The problem has been solved with the use of an equation of the electrolyte and hydrogen mixture (liquid and gas) flat flow inside the interelectrode gap. After introducing simplifying assumptions for the flow, void fraction distribution and the gap thickness, the equations were solved partly analytically, partly numerically. The obtained solutions for assigned parameters of the machining process are presented graphically in the form of distributions of: static pressure, the mixture flow rate, temperature, void fraction and evolution of the machined surface shape evolution.  相似文献   

19.
Electrochemical machining (ECM) provides an economical and effective way for machining heat-resistant, high-strength materials into complex shapes that are difficult to machine using conventional methods. It has been applied in several industries, especially aerospace, to manufacture blisk. The electrolyte flow field is a critical factor in ECM process stability and precision. To improve the process stability and the efficiency of blisk cascade passages, ECM with a radial feeding electrode, a rational electrolyte flow mode for electrochemical machining called “Π shape flow mode”, is discussed in the paper. Three flow field models are described separately in this report: traditional lateral flow mode, positive flow mode and Π-shaped flow mode, and the electrolyte velocity and pressure distribution vectors for each flow mode are calculated by means of a finite element fluid analysis method. The simulation results show that the electrolyte flow is more uniform with the Π-shaped flow mode. The deformation of the cathode, which is caused by the pressure difference, is also analysed in this report. The cascade passage ECM with a radial feeding electrode was experimentally tested out to evaluate the rationality of the flow field, and the fluctuation of current during the process was less than 1 %, which means that the process that uses the Π-shaped flow mode is stable. The feeding velocity of the cathode with the Π-shaped flow mode is approximately 70 % higher than that with the other two flow modes, and the incidences of short circuiting are obviously decreased. The surface roughness of the blisk hub is only 0.15 μm, and the machining error of the hub is less than 0.1 mm. The results demonstrate that using the Π-shaped flow mode can enhance the quality, stability and efficiency of blisk cascade passage ECM.  相似文献   

20.
Blades are crucial parts of aero-engines. Their manufacturing is difficult because of their thinness, complex profile and stringent requirements. Electrochemical machining (ECM) is an important approach for manufacturing blades, but it is difficult to machine the leading and trailing edges. This article adopts cross-structural cathodes in ECM to solve the open electric field space problem. The key difficulty in the design of cross-structural cathodes is the position of the crossed-point. The height and the offset of the crossed-point are optimized using the ANSYS software. The simulation results show that the position of the crossed-point obviously affects the machining accuracy, along the leading and trailing edges of the blade. A pair of cross-structural cathodes with one uniform section is designed, and a series of corresponding ECM experiments are carried out. The experiments demonstrate that the ECM process is stable, the profiles are sleek and the machining dimensional error is reduced to 0.08 mm at the leading and trailing edges of the blade when using the new cathode structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号