首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 173 毫秒
1.
Adenosine is a ubiquitous endogenous modulator with the main function of maintaining cellular and tissue homeostasis in pathological and stress conditions. It exerts its effect through the interaction with four G protein-coupled receptor (GPCR) subtypes referred as A1, A2A, A2B, and A3 adenosine receptors (ARs), each of which has a unique pharmacological profile and tissue distribution. Adenosine is a potent modulator of inflammation, and for this reason the adenosinergic system represents an excellent pharmacological target for the myriad of diseases in which inflammation represents a cause, a pathogenetic mechanism, a consequence, a manifestation, or a protective factor. The omnipresence of ARs in every cell of the immune system as well as in almost all cells in the body represents both an opportunity and an obstacle to the clinical use of AR ligands. This review offers an overview of the cardinal role of adenosine in the modulation of inflammation, showing how the stimulation or blocking of its receptors or agents capable of regulating its extracellular concentration can represent promising therapeutic strategies for the treatment of chronic inflammatory pathologies, neurodegenerative diseases, and cancer.  相似文献   

2.
Adenosine is a purine nucleoside, responsible for the regulation of multiple physiological and pathological cellular and tissue functions by activation of four G protein-coupled receptors (GPCR), namely A1, A2A, A2B, and A3 adenosine receptors (ARs). In recent years, extensive progress has been made to elucidate the role of adenosine in pain regulation. Most of the antinociceptive effects of adenosine are dependent upon A1AR activation located at peripheral, spinal, and supraspinal sites. The role of A2AAR and A2BAR is more controversial since their activation has both pro- and anti-nociceptive effects. A3AR agonists are emerging as promising candidates for neuropathic pain. Although their therapeutic potential has been demonstrated in diverse preclinical studies, no AR ligands have so far reached the market. To date, novel pharmacological approaches such as adenosine regulating agents and allosteric modulators have been proposed to improve efficacy and limit side effects enhancing the effect of endogenous adenosine. This review aims to provide an overview of the therapeutic potential of ligands interacting with ARs and the adenosinergic system for the treatment of acute and chronic pain.  相似文献   

3.
Adenosine is a cellular metabolite with diverse derivatives that possesses a wide range of physiological roles. We investigated the molecular mechanisms of adenosine and cordycepin for their promoting effects in wound-healing process. The mitochondrial energy metabolism and cell proliferation markers, cAMP responsive element binding protein 1 (CREB1) and Ki67, were enhanced by adenosine and cordycepin in cultured dermal fibroblasts. Adenosine and cordycepin stimulated adenosine receptor signaling via elevated cAMP. The phosphorylation of mitogen-activated protein kinase kinase (MEK) 1/2, mammalian target of rapamycin (mTOR) and glycogen synthase kinase 3 beta (Gsk3b) and Wnt target genes such as bone morphogenetic protein (BMP) 2/4 and lymphoid enhancer binding factor (Lef) 1 were activated. The enhanced gene expression by adenosine and cordycepin was abrogated by adenosine A2A and A2B receptor inhibitors, ZM241385 and PSH603, and protein kinase A (PKA) inhibitor H89, indicating the involvement of adenosine receptor A2A, A2B and PKA. As a result of Wnt/β-catenin pathway activation, the secretion of growth factors such as insulin-like growth factor (IGF)-1 and transforming growth factor beta (TGFβ) 3 was increased, previously reported to facilitate the wound healing process. In addition, in vitro fibroblast migration was also increased, demonstrating their possible roles in facilitating the wound healing process. In conclusion, our data strongly demonstrate that adenosine and cordycepin stimulate the Wnt/β-catenin signaling through the activation of adenosine receptor, possibly promoting the tissue remodeling process and suggest their therapeutic potential for treating skin wounds.  相似文献   

4.
5.
Although significant progress has been made in the past few decades demonstrating that adenosine modulates a variety of physiological and pathophysiological processes through the interaction with four subtypes of a family of cell-surface G-protein-coupled receptors, clinical evaluation of some adenosine receptor ligands has been discontinued. Major problems include side effects due to the wide distribution of adenosine receptors, low brain penetration (which is important for the targeting of CNS diseases), short half-life of compounds, or a lack of effects, in some cases perhaps due to receptor desensitization or to low receptor density in the targeted tissue. Currently, three A(2A) adenosine receptor agonists have begun phase III studies. Two of them are therapeutically evaluated as pharmacologic stress agents and the third proved to be effective in the treatment of acute spinal cord injury (SCI), while avoiding the adverse effects of steroid agents. On the other hand, the great interest in the field of A(2A) adenosine receptor antagonists is related to their application in neurodegenerative disorders, in particular, Parkinson's disease, and some of them are currently in various stages of evaluation. This review presents an update of medicinal chemistry and molecular recognition of A(2A) adenosine receptor agonists and antagonists, and stresses the strong need for more selective ligands at the A(2A) human subtype.  相似文献   

6.
7.
A key objective in immuno-oncology is to reactivate the dormant immune system and increase tumour immunogenicity. Adenosine is an omnipresent purine that is formed in response to stress stimuli in order to restore physiological balance, mainly via anti-inflammatory, tissue-protective, and anti-nociceptive mechanisms. Adenosine overproduction occurs in all stages of tumorigenesis, from the initial inflammation/local tissue damage to the precancerous niche and the developed tumour, making the adenosinergic pathway an attractive but challenging therapeutic target. Many current efforts in immuno-oncology are focused on restoring immunosurveillance, largely by blocking adenosine-producing enzymes in the tumour microenvironment (TME) and adenosine receptors on immune cells either alone or combined with chemotherapy and/or immunotherapy. However, the effects of adenosinergic immunotherapy are not restricted to immune cells; other cells in the TME including cancer and stromal cells are also affected. Here we summarise recent advancements in the understanding of the tumour adenosinergic system and highlight the impact of current and prospective immunomodulatory therapies on other cell types within the TME, focusing on adenosine receptors in tumour cells. In addition, we evaluate the structure- and context-related limitations of targeting this pathway and highlight avenues that could possibly be exploited in future adenosinergic therapies.  相似文献   

8.
The structure-activity relationships of xanthine derivatives related to the adenosine A(1) receptor antagonists 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) and 1,3-dipropyl-8-(3-noradamantyl)xanthine (KW3902) were investigated by focusing on variations of the 3-substituent. Aromatic residues were well tolerated by the A(1) receptor in that position. A moderate effect of stereochemistry was found for the 3-(1-phenylethyl)-substituted analogue of DPCPX (S>R) at A(1) and A(3) receptors, whereas the opposite stereoselectivity was observed at the A(2) receptor subtypes. A 3-hydroxypropyl substituent was found to be optimal for high A(1) affinity and selectivity. The most potent compound of the present series was 1-butyl-3-(3-hydroxypropyl)-8-(3-noradamantyl)xanthine (10 c), which exhibits a K(i) value of 0.124 nM at rat, and 0.7 nM at human adenosine A(1) receptors, combined with high selectivity (>200-fold) versus the other receptor subtypes. The similarly potent 8-cyclopentyl-3-(3-hydroxypropyl)-1-propylxanthine was converted into a water-soluble phosphate prodrug, which may become a useful pharmacological tool for in vivo studies. 8-Alkyl-2-(3-noradamantyl)pyrimido[1,2,3-cd]purine-8,10-diones, which can be envisaged as xanthine analogues with a fixed 3-propyl substituent, were identified as a new class of potent, selective adenosine A(1) receptor antagonists. For example, compound 14 (8-butyl-substituted) exhibits a K(i) value of 13.8 nM at human A(1) receptors. A selection of the most potent compounds was investigated in [(35)S]GTPgammaS binding assays and showed inverse agonistic activity. Their efficacy was generally lower than that of the full inverse agonist DPCPX, and depended on subtle structural changes. Some of the new compounds belong to the most potent and selective A(1) antagonists described to date.  相似文献   

9.
Atrial fibrillation (AF) is the most common form of cardiac arrhythmia seen in clinical practice. While some clinical parameters may predict the transition from paroxysmal to persistent AF, the molecular mechanisms behind the AF perpetuation are poorly understood. Thus, oxidative stress, calcium overload and inflammation, among others, are believed to be involved in AF-induced atrial remodelling. Interestingly, adenosine and its receptors have also been related to AF development and perpetuation. Here, we investigated the expression of adenosine A2A receptor (A2AR) both in right atrium biopsies and peripheral blood mononuclear cells (PBMCs) from non-dilated sinus rhythm (ndSR), dilated sinus rhythm (dSR) and AF patients. In addition, plasma adenosine content and adenosine deaminase (ADA) activity in these subjects were also determined. Our results revealed increased A2AR expression in the right atrium from AF patients, as previously described. Interestingly, increased levels of adenosine content and reduced ADA activity in plasma from AF patients were detected. An increase was observed when A2AR expression was assessed in PBMCs from AF subjects. Importantly, a positive correlation (p = 0.001) between A2AR expression in the right atrium and PBMCs was observed. Overall, these results highlight the importance of the A2AR in AF and suggest that the evaluation of this receptor in PBMCs may be potentially be useful in monitoring disease severity and the efficacy of pharmacological treatments in AF patients.  相似文献   

10.
A concise synthesis of a series of N(6)-substituted adenosines with bicyclo[3.2.1]octan-6-yl and polycyclic N(6)-substituents has been developed. The adenosine A(1) receptor (A(1)R) affinity and potency of these compounds was initially assessed using competitive binding assays and cyclic adenosine monophosphate (cAMP) accumulation assays in DDT(1) MF-2 cells. The potency and receptor subtype selectivity of selected examples was further evaluated by measuring their effects on cAMP accumulation at all human adenosine receptor subtypes expressed in CHO cells. The results of these assays indicated that all of the synthesised N(6)-substituted adenosines are full agonists at A(1) R and activate this receptor selectively over the other adenosine receptor subtypes. The two standout compounds in terms of potency were N(6)-(3-thiabicyclo[3.2.1]octan-6-yl)adenosine and N(6)-(cubanylmethyl)adenosine with EC(50) values at human A(1)R of 2.3 nM and 1.1 nM, respectively. The cubanylmethyl derivative in particular proved to be highly receptor subtype selective. These two compounds were further evaluated in a simulated ischaemia model in cultured cardiomyoblasts, where they were found to impart protective effects under hypoxic conditions that resulted in a significant reduction in cell death.  相似文献   

11.
Based on our previous results on the potent antagonist effect of 1H,3H-pyrido[2,1-f]purine-2,4-diones at the human A(3) adenosine receptor, new series of this family of compounds have been synthesized and evaluated in radioligand binding studies against the human A(1), A(2A), A(2B), and A(3) receptors. A remarkable improvement in potency, and most noticeable, in selectivity has been achieved, as exemplified by the 3-cyclopropylmethyl-8-methoxy-1-(4-methylbenzyl)-1H,3H-pyrido[2,1-f]purine-2,4-dione (10) that combines a very high affinity at hA(3) (K(i)=2.24 nM), with lack of affinity for the A(1), A(2A), and A(2B) receptors. On the basis of the published hA(3) receptor model (PDB 1OEA), molecular modeling studies, including molecular dynamics (MD) simulations, have been performed to depict the binding mode of the 1 H,3H-pyrido[2,1-f]purine-2,4-diones and to justify the selectivity against the other adenosine receptors. These studies have led to novel features of the cavity where our antagonists are bound so that the cavity is lined by the hydrogen-bonded Gln 167-Asn 250 pair and by the highly conserved Phe 168.  相似文献   

12.
Adenosine is a signaling molecule, which, by activating its receptors, acts as an important player after cerebral ischemia. Here, we review data in the literature describing A2BR-mediated effects in models of cerebral ischemia obtained in vivo by the occlusion of the middle cerebral artery (MCAo) or in vitro by oxygen-glucose deprivation (OGD) in hippocampal slices. Adenosine plays an apparently contradictory role in this receptor subtype depending on whether it is activated on neuro-glial cells or peripheral blood vessels and/or inflammatory cells after ischemia. Indeed, A2BRs participate in the early glutamate-mediated excitotoxicity responsible for neuronal and synaptic loss in the CA1 hippocampus. On the contrary, later after ischemia, the same receptors have a protective role in tissue damage and functional impairments, reducing inflammatory cell infiltration and neuroinflammation by central and/or peripheral mechanisms. Of note, demyelination following brain ischemia, or autoimmune neuroinflammatory reactions, are also profoundly affected by A2BRs since they are expressed by oligodendroglia where their activation inhibits cell maturation and expression of myelin-related proteins. In conclusion, data in the literature indicate the A2BRs as putative therapeutic targets for the still unmet treatment of stroke or demyelinating diseases.  相似文献   

13.
A number of quinolines and isoquinolines connected in various ways to a substituted benzimidazol-2-yl system were synthesized and evaluated as novel antagonists of adenosine receptors (ARs) by competition experiments using human A(1), A(2A), and A(3) ARs. The new compounds were designed based on derivatives of 2-(benzimidazol-2-yl)quinoxaline, previously reported as potent and selective antagonists of A(1) and A(3) ARs. Among these, 3-[4-(ethylthio)-1H-benzimidazol-2-yl]isoquinoline 4b exhibited the best combination of potency toward the A(1) AR (K(i) =1.4 nM) and selectivity against the A(2A) (K(i) >10 μM), A(2B) (K(i)>10 μM), and A(3) ARs (K(i)>1 μM). Functional experiments in circular smooth muscle preparations of isolated human colon showed that 4b behaves as a potent and selective antagonist of the A(1) AR in the neuromuscular compartment of this intestinal region. Biological and pharmacological data suggest that 4b is a suitable starting point for the development of novel agents endowed with stimulant properties on colonic activity.  相似文献   

14.
Background: Oncolytic viruses are immunotherapeutic agents that can be engineered to encode payloads of interest within the tumor microenvironment to enhance therapeutic efficacy. Their therapeutic potential could be limited by many avenues for immune evasion exerted by the tumor. One such is mediated by adenosine, which induces pleiotropic immunosuppression by inhibiting antitumor immune populations as well as activating tolerogenic stimuli. Adenosine is produced starting from the highly immunostimulatory ATP, which is progressively hydrolyzed to ADP and adenosine by CD39 and CD73. Cancer cells express high levels of CD39 and CD73 ectoenzymes, thus converting immunostimulatory purinergic signal of ATP into an immunosuppressive signal. For this reason, CD39, CD73 and adenosine receptors are currently investigated in clinical trials as targets for metabolic cancer immunotherapy. This is of particular relevance in the context of oncovirotherapy, as immunogenic cell death induced by oncolytic viruses causes the secretion of a high amount of ATP which is available to be quickly converted into adenosine. Methods: Here, we took advantage of adenosine deaminase enzyme that naturally converts adenosine into the corresponding inosine derivative, devoid of immunoregulatory function. We encoded ADA into an oncolytic targeted herpes virus redirected to human HER2. An engineered ADA with an ectopic signal peptide was also generated to improve enzyme secretion (ADA-SP). Results: Insertion of the expression cassette was not detrimental for viral yield and cancer cell cytotoxicity. The THV_ADA and THV_ADA-SP successfully mediated the secretion of functional ADA enzyme. In in vitro model of human monocytes THP1, this ability of THV_ADA and THV_ADA-SP resulted in the retrieval of eADO-exposed monocytes replication rate, suggesting the proficiency of the viruses in rescuing the immune function. Conclusions: Encoding ADA into oncolytic viruses revealed promising properties for preclinical exploitation.  相似文献   

15.
Kidney fibrosis is the final outcome of chronic kidney disease (CKD). Adenosine plays a significant role in protection against cellular damage by activating four subtypes of adenosine receptors (ARs), A1AR, A2AAR, A2BAR, and A3AR. A2AAR agonists protect against inflammation, and A3AR antagonists effectively inhibit the formation of fibrosis. Here, we showed for the first time that LJ-4459, a newly synthesized dual-acting ligand that is an A2AAR agonist and an A3AR antagonist, prevents the progression of tubulointerstitial fibrosis. Unilateral ureteral obstruction (UUO) surgery was performed on 6-week-old male C57BL/6 mice. LJ-4459 (1 and 10 mg/kg) was orally administered for 7 days, started at 1 day before UUO surgery. Pretreatment with LJ-4459 improved kidney morphology and prevented the progression of tubular injury as shown by decreases in urinary kidney injury molecular-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) excretion. Obstruction-induced tubulointerstitial fibrosis was attenuated by LJ-4459, as shown by a decrease in fibrotic protein expression in the kidney. LJ-4459 also inhibited inflammation and oxidative stress in the obstructed kidney, with reduced macrophage infiltration, reduced levels of pro-inflammatory cytokines, as well as reduced levels of reactive oxygen species (ROS). These data demonstrate that LJ-4459 has potential as a therapeutic agent against the progression of tubulointerstitial fibrosis.  相似文献   

16.
17.
Sixty-eight new substituted pyrazolo[3,4-b]pyridine derivatives were synthesized and tested for enriching a library of active A(1) adenosine receptor (AR) antagonists belonging to the same class. These compounds were also used as an external test set to check the reliability of a 3D QSAR model recently reported by us. To investigate the binding mode of pyrazolopyridine derivatives, a model of the bovine A(1)AR (bA(1)AR) was developed by a novel homology modeling approach and used to evaluate the main interactions of the ligands with the receptor through docking studies. Results suggest important interactions of the ligands mainly with L3.33(88), T3.36(91), Q3.37(92) and H6.52(251), in agreement with mutagenesis data. The racemic mixture of the most active compound was separated into the corresponding enantiomers which showed a bA(1)AR affinity in the nanomolar range, with the R enantiomer sevenfold more active than the S enantiomer, according to results derived from calculations on the receptor model. Analysis of the bovine/human A(1)AR affinity profile of ligands supported the hypothesis that such receptors should be characterized by a different size of their binding site, responsible for the different affinity of the antagonists.  相似文献   

18.
Annelated purinedione derivatives have been shown to act as possible multiple-target ligands, addressing adenosine receptors and monoaminooxidases. In this study, based on our previous results, novel annelated pyrimido- and diazepino[2,1-f]purinedione derivatives were designed as dual-target-directed ligands combining A2A adenosine receptor (AR) antagonistic activity with blocking monoamine oxidase B. A library of 19 novel compounds was synthesized and biologically evaluated in radioligand binding studies at AR subtypes and for their ability to inhibit MAO-B. This allowed 9-(2-chloro-6-fluorobenzyl)-3-ethyl-1-methyl-6,7,8,9-tetrahydropyrimido[2,1-f]purine-2,4(1H,3H)-dione ( 13 e ; Ki human A2AAR: 264 nM and IC50 human MAO-B: 243 nM) to be identified as the most potent dual-acting ligand from this series. ADMET parameters were estimated in vitro, and analysis of the structure-activity relationships was complemented by molecular-docking studies based on previously published X-ray structures of the protein targets. Such dual-acting ligands, by selectively blocking A2A AR, accompanied by the inhibition of dopamine metabolizing enzyme MAO-B, might provide symptomatic and neuroprotective effects in, among others, the treatment of Parkinson disease  相似文献   

19.
Pannexin 1 channels located in the cell membrane are permeable to ions, metabolites, and signaling molecules. While the activity of these channels is known to be modulated by phosphorylation on T198, T308, and S206, the possible involvement of other putative phosphorylation sites remains unknown. Here, we describe that the activity of Panx1 channels induced by mechanical stretch is reduced by adenosine via a PKA-dependent pathway. The mechanical stretch-induced activity—measured by changes in DAPI uptake—of Panx1 channels expressed in HeLa cell transfectants was inhibited by adenosine or cAMP analogs that permeate the cell membrane. Moreover, inhibition of PKA but not PKC, p38 MAPK, Akt, or PKG prevented the effects of cAMP analogs, suggesting the involvement of Panx1 phosphorylation by PKA. Accordingly, alanine substitution of T302 or S328, two putative PKA phosphorylation sites, prevented the inhibitory effect of cAMP analogs. Moreover, phosphomimetic mutation of either T302 or S328 to aspartate prevented the mechanical stretch-induced activation of Panx1 channels. A molecular dynamics simulation revealed that T302 and S328 are located in the water–lipid interphase near the lateral tunnel of the intracellular region, suggesting that their phosphorylation could promote conformational changes in lateral tunnels. Thus, Panx1 phosphorylation via PKA could be modulated by G protein-coupled receptors associated with the Gs subunit.  相似文献   

20.
The osmodiuretic agent Mannitol exerts cardioprotection against ischemia and reperfusion (I/R) injury when applied as a pre- and/or postconditioning stimulus. Previously, we demonstrated that these properties are mediated via the activation of mitochondrial ATP-sensitive potassium (mKATP) channels. However, considering Mannitol remains in the extracellular compartment, the question arises as to which receptor and intracellular signaling cascades are involved in myocardial protection by the osmodiuretic substance. Protein kinase B (Akt) and G (PKG), as part of the reperfusion injury salvage kinase (RISK) and/or endothelial nitric oxide (eNOS)/PKG pathway, are two well-investigated intracellular targets conferring myocardial protection upstream of mitochondrial potassium channels. Adenosine receptor subtypes have been shown to trigger different cardioprotective pathways, for example, the reperfusion injury. Further, Mannitol induces an increased activation of the adenosine 1 receptor (A1R) in renal cells conferring its nephroprotective properties. Therefore, we investigated whether (1) Akt and PKG are possible signaling targets involved in Mannitol-induced conditioning upstream of the mKATP channel and/or whether (2) cardioprotection by Mannitol is mediated via activation of the A1R. All experiments were performed on male Wistar rats in vitro employing the Langendorff isolated heart perfusion technique with infarct size determination as the primary endpoint. To unravel possible protein kinase activation, Mannitol was applied in combination with the Akt (MK2206) or PKG (KT5823) inhibitor. In further groups, an A1R blocker (DPCPX) was given with or without Mannitol. Preconditioning with Mannitol (Man) significantly reduced the infarct size compared to the control group. Co-administration of the A1R blocker DPXPC fully abolished myocardial protection of Mannitol. Interestingly and in contrast to the initial hypothesis, neither administration of the Akt nor the PKG blocker had any impact on the cardioprotective properties of Mannitol-induced preconditioning. These results are quite unexpected and show that the protein kinases Akt and PKG—as possible targets of known protective signaling cascades—are not involved in Mannitol-induced preconditioning. However, the cardioprotective effects of Mannitol are mediated via the A1R.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号