首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
运用有限元方法建立环氧沥青混合料细观结构模型,对其间接拉伸试验(IDT)进行数值模拟.首先借助图像处理技术得到由集料和沥青砂浆组成的环氧沥青混合料二相细观结构,并通过蠕变试验获取沥青砂浆常温下的黏弹性材料参数,最后结合有限元手段建立包含集料、砂浆等在内的混合料细观结构有限元模型.数值模拟结果表明,有限元计算的混合料劲度模量与实际IDT试验结果吻合较好,通过改变加载方向、加载速率等参数,发现对混合料细观结构的劲度模量以及局部点位应力均造成一定影响,分析主要原因可能是由沥青混合料的内部结构分布不均匀性以及沥青砂浆的黏弹性特点所造成.研究成果可为微观有限元方法进一步推广应用于不同条件下沥青混合料微观力学响应仿真提供理论依据.  相似文献   

2.
Numerical analysis using a finite-element model was performed to simulate and investigate the long-term behavior of two RC beams with similar steel reinforcement, cast from the same batch of concrete. One beam was a plain RC beam and the other beam was strengthened using carbon fiber-reinforced polymer (FRP) strips. The deflections of both beams have been monitored for 5 years after loading. The finite-element model included both creep of concrete and viscoelasticity of the epoxy adhesive at the concrete-carbon FRP (CFRP) interface. The results of the finite-element analysis are compared to experimental observations of the two beams. The finite-element analysis was found to be able to simulate the long-term behavior of the CFRP-strengthened beam and help us understand the complex changes in the stress state that occur over time.  相似文献   

3.
A finite-element formulation for the analysis of time-dependent failure of concrete is presented. The proposed formulation incorporates: (1) the viscoelastic behavior of uncracked concrete through a Maxwell chain model; and (2) the inelastic behavior of damaged concrete, characterized by a modified version of the microplane Model M4 which includes the rate dependence of fracturing. The proposed formulation is applied to the simulation of quasi-static concrete failure in the time domain. The different effects of creep and rate dependence of crack growth and their role in the lifetime of concrete structures are studied. The influence of different loading rates on the size effect is also analyzed with reference to single notched specimens, revealing the link between the size of the fracture process zone and the loading rate. The capability of the proposed numerical formulation is also verified for the case of sustained uniaxial compressive loads.  相似文献   

4.
The permeability coefficient of a rock mass depends mainly on the aperture of the joint and the porosity of the block, which may alter with time when creep of the rock mass is taken into account. Therefore, a coupled creep and seepage model for hybrid media is proposed in this paper. Large-scale and strongly permeable joints are simulated according to their spatial distributions, while other discontinuities are treated as equivalent continuum. Based on the fundamental mechanism of creep effects on the permeability of the rock mass, together with empirical equations for hydraulic conductivity, coupled creep and seepage equations for filled joints, rough joints, and equivalent continuum are proposed. By application of these equations, governing equations for the coupled creep and seepage model are deduced. A simplified numerical solution is proposed to solve the coupled creep and seepage model. The coupled model is shown to simulate the evolvement of seepage, deformation, and stress field in a gravity dam. By comparing the results derived by coupled and uncoupled models, it is concluded that the coupling between creep and seepage should be taken into account when performing engineering design of large dams.  相似文献   

5.
In this paper some aspects of the recent development of the phenomenological theory of plasticity are reviewed. Deformation processes running with finite rate represent coupled thermo-mechanical processes. Therefore the theory of plasticity has to be embedded into a consistent thermodynamical frame. How this can be done is sketched for a simple material model. The bounds of this thermodynamical frame result from the assumption that the thermodynamical state of each material element is describable by a set of external and internal state variables at any time. Concerning the rate dependence of deformation processes two different kinds of phenomena can be distinguished:
    相似文献   

6.
Analysis of Steady Cone Penetration in Clay   总被引:1,自引:0,他引:1  
In this paper, a novel finite-element procedure is used to analyze steady cone penetration in soils. Although the procedure is, in principle, applicable to clay and sand with any plasticity model, this paper is only concerned with steady cone penetration in undrained clay. The steady-state finite-element analysis focuses on the total displacements experienced by soil particles at a particular instant in time during the cone penetration test. This is possible because, with the steady-state assumption, the time dependence of stresses and strains can be expressed as a space dependence in the penetration direction. As a result, the finite-element solution of steady cone penetration can be obtained in one step. When compared with the strain path method, the present finite-element procedure offers the following advantages: (1) All equations of soil equilibrium are fully accounted for; (2) cone and shaft roughness can be taken into account in a more rigorous manner and, as a result, the sleeve friction ratio can be properly predicted; and (3) the finite-element procedure can be more easily adapted to analyze cone penetration in dilatant soils.  相似文献   

7.
In the paper we derive an expression for the cyclic minimum strain rate of cyclic creep in systems where anelastic relaxation is a controlling mechanism. The cyclic creep behavior is modeled by assuming that the anelastic strain recovered during the off-load periods must first be stored during the on-load periods before nonrecoverable creep results. To perform the derivation, the time dependence of the anelastic relaxation is reported for two oxide dispersion strengthened alloys and shown to be adequately described by a double exponential function. The time dependence of the anelastic relaxation is then incorporated into an expression, generally used to describe static minimum strain rate data, to obtain the frequency dependence of the cyclic minimum strain rate. The predicted values of the derived expression using results from static creep and strain relaxation tests are in excellent agreement with the experimentally observed cyclic creep results with the use of no adjustable parameters. The proposed model of anelastic strain storage delaying nonrecoverable creep is also shown to be consistent with the observed effects of temperature and maximum load on the cyclic minimum strain rate.  相似文献   

8.
The deformation and pore-water pressure responses of clayey soils are of great interest to civil engineers. In this paper, displacements and pore-water pressures of a clay subjected to the loading of a strip footing are simulated using a fully coupled finite-element (FE) consolidation method incorporated with a newly developed 3D elastic viscoplastic (EVP) model for the clay. A brief introduction to the 3D EVP model and its implementation in the FE analysis is presented. The 3D EVP model can describe the time-dependent stress-strain behavior of clayey soils, including volumetric creep. The main objective of this paper is to examine how the viscosity (or creep parameter ψ/V) of the clay affects the deformation and pore-water pressure responses of the clay. For this, the value of the creep parameter ψ/V is varied in the FE analysis. When viscous nature is taken into account, the pore-water pressure in the soil is higher than that without consideration of the viscous nature. The phenomenon of pore-water pressure increase due to creep is studied in this paper. It is found that larger creep parameter ψ/V results in higher pore-water pressure and larger deformation in the soil. The difference of the pore-water pressure due to the Mandel-Cryer effects and the creep is investigated using the FE model and discussed in this paper. In addition, a few other parameters (Poisson's ratio ν, permeability k, clay layer thickness h, and thickness h to a half footing width a ratio h∕a) are also varied to investigate their influence on deformation and pore-water pressure of the soil with creep. It is found that, the lower the permeability of soil, the higher is the pore-water pressure and the larger is the local deformation. The thickness of the soil layer also has a great influence on the pore-water pressure induced by the viscous effect. All these increased pore-water pressures result from a balance of the pore-water pressures induced by creep (and the Mandel-Cryer effects or both) and dissipated because of drainage.  相似文献   

9.
The previously developed microprestress-solidification theory for concrete creep and shrinkage is generalized for the effect of temperature (not exceeding 100°C). The solidification model separates the viscoelasticity of the solid constituent, the cement gel, from the chemical aging of material caused by solidification of cement and characterized by the growth of volume fraction of hydration products. This permits considering the viscoelastic constituent as non-aging. The temperature dependence of the rates of creep and of volume growth is characterized by two transformed time variables based on the activation energies of hydration and creep. The concept of microprestress achieves a grand unification of theory in which the long-term aging and all transient hygrothermal effects simply become different consequences of one and the same physical phenomenon. The microprestress, which is independent of the applied load, is initially produced by incompatible volume changes in the microstructure during hydration, and later builds up when changes of moisture content and temperature create a thermodynamic imbalance between the chemical potentials of vapor and adsorbed water in the nanopores of cement gel. As recently shown, this simultaneously captures two basic effects: First, the creep decreases with increasing age at loading after the growth of the volume fraction of hydrated cement has ceased; and, second, the drying creep, i.e., the transient creep increases due to drying (Pickett effect) which overpowers the effect of steady-state moisture content (i.e., less moisture—less creep). Now it is demonstrated that the microprestress buildup and relaxation also captures a third effect: The transitional thermal creep, i.e., the transient creep increase due to temperature change. For computations, an efficient (exponential-type) integration algorithm is developed. Finite element simulations, in which the apparent creep due to microcracking is taken into account separately, are used to identify the constitutive parameters and a satisfactory agreement with typical test data is achieved.  相似文献   

10.
The drawing of TRIP steel rod is analyzed. Such steel offers a range of performance benefits. For the case where the microstructure of TRIP steel must be taken into account, problems with traditional process design based on finite-element computer simulation are noted. By means of multiscale simulation, the microstructure of the steel and the dynamic structural and phase transformations (the TRIP effect) may be taken into account. The proposed approach to multiscale modeling is tested for the drawing of TRIP 700 steel in a traditional system. The possibility of controlling the distribution of the steel’s properties by means of the process parameters is assessed. By the proposed method, the deformational interaction of the microstructural elements of TRIP steel may be studied, and the computer resources required by the model may be dramatically decreased.  相似文献   

11.
The objective of this study is to characterize the creep behavior of hot-mix asphalt (HMA) at intermediate (20°C) and at high temperatures (40°C). To accomplish this objective, a nonlinear time-hardening creep model, characterized through laboratory testing, was incorporated into a three-dimensional (3D) finite-element (FE) model, which was used to calculate permanent creep strains after applying repetitive vehicular loading cycles at the pavement surface. Two different tire configurations were simulated representing a typical dual-tire assembly and a newly introduced wide-base tire (dual-tire: 275/80R22.5 and wide-base tire: 455/55R22.5). Results of the 3D FE model were successfully verified against pavement response measurements in the field at the Virginia Smart Road. While the elastic or linear viscoelastic FE model may not simulate permanent deformation or shear creep strains after repetitions of vehicular loading, a nonlinear time-hardening creep model could predict primary rutting damage in HMA and shear creep strains at the edge of the tire imprint caused by different tire configurations.  相似文献   

12.
The model of creep in dispersion (non-coherent particle) strengthened alloys assuming thermally activated detachment of dislocations from particles to be the rate controlling process, recently presented by Rösler and Arzt, is correlated with some available creep and structure data for aluminium alloys strengthened by Al4C3 and Al2O3 particles. It is shown that though the model requires applied stress dependent apparent activation energy of creep, the stress dependence of creep rate can be satisfactorily accounted for even when this activation energy is stress independent, admitting a strong stress dependence of the pre-exponential structure factor, i.e. of the mobile dislocation density. On the other hand, the model is not able to account for the temperature dependence of creep rate if it is significantly stronger than that of the coefficient of lattice diffusion as is usually the case with alloys strengthened by non-coherent particles in which the attractive dislocation/particle interaction can be expected.  相似文献   

13.
A continuum mechanics model is developed to explain the creep deformation of ductile two-phase alloys. The model predicts that the transient creep is caused by the internal stresses in second phase and matrix resulting from the difference in creep strain between two phases induced by the strength difference, even if the inherent transient creep in both phases is not taken into account. The difference in creep strain between two phases in steady-state creep is analytically obtained for the alloys in which both second phase and matrix exhibit the exponential law, the power-law or the hyperbolic sine law creep. The continuum mechanics model gives the same values of steady-state creep rate as the constant creep rate model by McDanels and co-workers. The results of analysis based on the continuum mechanics model are compared with the experimental results.  相似文献   

14.
In the study of time dependent behavior of rock, the main difficulty is to predict delayed failure, which is of the utmost importance in assessing the safety of underground structures, such as deep underground facilities designed for high-level radioactive waste disposal. In this context, the viscoplastic behavior associated with the rock damage must be taken into account. As the longitudinal and transversal wave velocities are related to the physical and mechanical characteristics of materials, ultrasonic measurements can give valuable information about the development of damage. In this study, P-wave velocity measurements were used to monitor damage evolution during uniaxial strain in controlled compression tests and long-term creep tests. These measurements were performed using sensors in a piezoelectric copolymer of polyvinyl-difluoride, which were placed on both ends of cylindrical rock specimens. Throughout the experiments, the dilating behavior of an argillite could be correlated with a decrease of the P-wave velocity. Our results show that during a creep test, P-wave velocity measurements allow the three different phases of creep to be distinguished. During primary creep the P wave increases because of pore closure. The secondary creep phase, characterized by a constant strain rate, is identified by a linear decrease of the wave velocity; this trend accelerates during tertiary creep.  相似文献   

15.
With the findings of the preceding part II a model is established which considers dislocation and diffusion creep and which is used to simulate the creep behaviour of alloys with grain and particle coarsening during creep. It is found that the structure changes during creep give rise to a complex stress – strain rate dependence and to additional transition fields in the corresponding deformation maps which is of importance for the interpretation of practical long-term creep results.  相似文献   

16.
The rheological behavior of a solidifying alloy is modeled by considering the deforming material as a viscoplastic porous medium saturated with liquid. Since the solid grains in the mush do not form a fully cohesive skeleton, an internal variable that represents the partial cohesion of this porous material is introduced. The model parameters are identified using shear and compressive stress states under isothermal conditions on an Al-Cu model alloy. The model is partially validated with non-isothermal conditions and we complete this study with tensile conditions. Such conditions, when applied on the mush, may lead to severe defects in many casting processes. The model has been implemented into a commercial finite-element code to simulate a tensile test. Comparison with experimental data shows that the model is able to reproduce the main features of a solidifying alloy under tension, although fracture is not directly addressed here. We show that two critical solid fractions must be introduced in the model to account for the rheology: the coherency solid fraction at which the mush acquires significant strength and the coalescence solid fraction at which solid grains start to form solid bridges.  相似文献   

17.
In this paper the problem of creep damage assessing as well as of creep life prediction of metallic materials under variable loading conditions is considered. A non‐linear model for creep damage accumulation which is based on a more general physical‐phenomenological model describing the mechanical behaviour of metallic materials under creep conditions, is presented. The model is suitable for the prediction of the creep damage accumulation under variable load and/or temperature. The proposed model takes into account the previous damage history and, definitely, the loading order. In any case the creep strain accumulation is taken into account as this is directly associated with the creep damage accumulation. Theoretical results agree well with the experiments.  相似文献   

18.
Viscoplastic Cap Model for Soils under High Strain Rate Loading   总被引:1,自引:0,他引:1  
A viscoplastic cap model of the Perzyna type was developed for simulating high strain rate behaviors of soils. An associative viscous flow rule was used to represent time-dependent soil behaviors. The viscoplastic cap model was validated against experimental data from static and dynamic soil tests. The model was also compared with soil behaviors under creep and stress relaxation with good agreement. However, the model was unable to represent tertiary creep where strain softening became significant. The model was subsequently integrated into LS-DYNA for finite-element simulations of high strain rate behaviors of sandy and clayey soils in explosive tests. The significance of strain rate effect on the soil responses is presented herein. It is concluded that the viscoplastic cap model is adequate for simulations of soil behaviors under high strain rate loading, creep, and stress relaxation, covering a wide range of time-dependent problems.  相似文献   

19.
A simplified finite-element model for tissue regeneration is proposed. The model takes into account the sequential steps of angiogenesis (neo-vascularization) and wound closure (the actual healing of a wound). An innovation in the present study is the combination of both partially overlapping processes, yielding novel insights into the process of wound healing, such as geometry related influences, and could be used to investigate the influence of local injection of hormones that stimulate partial processes occurring during wound healing. These insights can be used to improve wound healing treatments. The models consist of nonlinearly coupled diffusion-reaction equations, in which transport of oxygen, growth factors, and epidermal cells and mitosis are taken into account.  相似文献   

20.
The mixing when gas is injected into liquid metal is theoretically studied. Physical modeling shows that the similarity of the model and sample (scaling and proportionality) must be taken into account in selecting the model. The influence of the injection rate on the batch hydrodynamics and the conditions of bubble motion is established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号