共查询到20条相似文献,搜索用时 93 毫秒
1.
根据察哈素煤矿地质条件,应用极限强度理论计算方法计算出了长壁工作面护巷煤柱的合理宽度;采用FLAC3D对长壁工作面区段煤柱宽度为10,15,20 m 3种条件下的塑性破坏范围和应力分布特征进行了模拟,结果表明,煤柱的塑性区范围随煤柱宽度的增加而减小,二次采动影响大于一次采动影响;煤柱内的应力大小随煤柱宽度的不同而变化,曲线整体呈上凸趋势的应力分布规律;综合理论计算与数值模拟结果,获得了该矿合理的区段煤柱宽度为12 m。将结果应用于现场,利用声波探测仪在现场对巷道11个位置的松动圈进行了观测,验证了区段煤柱尺寸的合理性,提高了回采率。 相似文献
2.
煤柱宽度合理留设是实现小煤柱开采技术的关键,文章以马堡煤业15202工作面为研究对象,通过钻孔窥视、煤岩物理力学测试、理论分析、数值模拟等手段,对煤柱的合理留设宽度进行了研究,结果表明:当煤柱宽度为6 m时,垂直应力峰值水平较低,上帮影响程度较低,底板最大水平应力影响范围较小,最终确定合理煤柱宽度为6 m. 相似文献
3.
4.
5.
区段煤柱的合理留设对确保矿井安全生产与煤炭资源的合理利用意义重大。为确定不连沟煤矿巨厚煤层工作面区段煤柱的合理留设宽度,以F6201工作面为例,采用数值模拟软件FLAC模拟了不同宽度下区段煤柱周边应力分布及变形量,并分析数值模拟的结果,得出区段煤柱留设宽度为17.5~22.5 m时煤柱的变形量小,稳定性较高。通过监测工作面侧向支承压力,验证了该结论。 相似文献
6.
对薄煤层工作面而言,合理的区段煤柱宽度对降低巷道维护难度和提高煤炭采出率十分重要.基于赵家寨煤矿薄煤层赋存条件,采用数值模拟软件研究了不同煤柱宽度下巷道围岩应力分布状况,从降低巷道维护难度和提高煤炭采出率角度提出合理煤柱留设宽度. 相似文献
7.
采用FLAC2D模拟软件对跃进煤矿特厚煤层条件下不同宽度煤柱留设进行了理论模拟,分析了不同护巷煤柱条件下垂直应力与垂直位移分布情况,理论得知留设5m的窄煤柱段与30m的宽煤柱段对掘进巷道起到的保护效果基本相同。井下现场在1210工作面掘巷期间留设5m的小煤柱和30m的宽煤柱进行了现场工业性试验,KBD5仪器采集的电磁辐射数据整体偏小且波动不大,说明留设5m的小煤柱能稳定的起到对巷道的保护作用。 相似文献
8.
9.
针对补连塔煤矿1-2煤层遗留煤柱下22305工作面开采时造成相邻工作面煤柱巷道变形破坏等难题,根据煤层开采条件,采用理论分析、数值模拟、现场实践等手段对上覆遗留区段煤柱下回采巷道的合理煤柱宽度进行了研究。结果表明:遗留煤柱下底板应力环境特征的改变和下层煤层采动影响的共同作用造成相邻工作面煤柱巷道的变形破坏;对煤柱底板应力传递规律进行分析,得出回采巷道的布置与遗留煤柱的的最小水平距离为28.6m;数值模拟结果表明,遗留煤柱下存在应力增高区,煤柱两侧边缘处的应力高于原岩应力,表明遗留煤柱的影响范围远大于其煤柱宽度;下层煤开采后打破原遗留煤柱的应力影响区域,但对相邻回采巷道的冲击影响巨大,最后确定合理的煤柱宽度为30m时能最大限度节省煤炭资源和维护回采巷道的稳定。 相似文献
10.
以夏店煤矿地质条件为基础,对3107综放工作面沿空侧煤柱内应力分布特征进行了研究,并对煤柱合理留设宽度进行了确定。理论计算3107综放面煤柱宽度应在23.55~27.97 m范围内,通过数值模拟分析,确定煤柱留设宽度可取计算所得宽度的下限。综合考虑安全、经济等因素,最终确定3107综放面沿空侧的煤柱宽度为25 m。煤柱宽度比按工程经验留设的宽度减少了10 m,不仅提高了煤炭资源的采出率,而且可大大提升矿井的经济效益。 相似文献
11.
为了解决五阳煤矿综放面区段煤柱宽度过大问题,基于7803综放面工程地质条件,运用极限强度理论和弹塑性理论计算出了煤柱合理宽度分别为7.9,7.6 m;采用FLAC3D软件模拟分析了7803综放面侧向支承压力,并确定其峰值在距离巷道16 m处,分析了不同煤柱宽度塑性区分布规律。综合考虑巷道支护难度、安全系数、资源采出率等客观因素,确定7803综放面合理煤柱宽度为8~10 m。 相似文献
12.
针对某煤矿沿采空区边缘布置开拓巷道、护巷煤柱宽度的选择问题,依据矿井生产地质条件及现场实际,采用理论分析对煤柱的宽度范围进行确定,并利用FLAC3D数值软件对7种宽度范围内的煤柱进行模拟,分别从沿空掘进期间煤柱的垂直应力分布、水平位移分布、表面位移对煤柱的稳定性进行对比分析,确定了合理的沿空掘巷煤柱尺寸。研究结果表明,理论公式计算得出煤柱的最大宽度为15.03 m;煤柱宽度为4~5 m时,煤柱内垂直应力峰值最小,煤柱向巷道移近量较小,且较稳定。 相似文献
13.
基于地应力测量和三维建模技术,对黄岩汇15111工作面褶曲构造应力场进行了反演,研究了构造应力区采空区边缘不同位置处煤层顶板垂直应力的分布特征,不同位置处护巷煤柱上垂直应力、巷道顶板水平应力、以及巷道围岩变形量随煤柱宽度增加而变化的规律,并据此探索了一种确定构造应力区沿空巷道合理窄煤柱宽度方法,确定该构造应力区窄煤柱宽度为6.5 m。研究发现:构造应力区采空区边缘应力集中系数减少量在背斜左翼、向斜右翼中部最为明显;处于背斜左翼、向斜右翼中心对称位置煤柱上垂直应力、巷道顶板水平应力曲线呈“分别相似”特征,且该特征随着煤柱宽度增加而变得明显;构造应力区窄煤柱上垂直应力峰值偏向巷道侧,且垂直应力场随着煤柱宽度增加出现明显的内、外应力场;构造应力对沿空巷道顶板水平应力的分布也有影响,煤柱宽度为4.0~8.0 m时,巷道顶板水平应力自褶曲背向斜交界处向背、向斜轴部呈递减趋势,煤柱宽度为9.0~16.0 m时,呈递增趋势;褶曲对巷道围岩变形量的影响在煤柱宽度较窄时较为明显,在煤柱宽度4.0~10.0 m时,褶曲背、向斜中心对称位置巷道围岩变形量呈“分别相似”特征,煤柱宽度大于10.0 m后褶曲背、向斜中心对称位置巷道围岩变形量变化特征趋于一致。 相似文献
14.
为了研究浅埋近距离煤层中下煤层回撤通道护巷煤柱合理留设宽度,采用理论分析、相似模拟和数值模拟的研究方法,研究了下煤层回撤通道护巷煤柱覆岩结构特征,确定了采空区边缘下方回撤通道护巷煤柱合理留设宽度。研究表明:在上煤层开采完毕后,由于上煤层停采线煤柱的原因,下煤层回撤通道因布置位置不同将造成护巷煤柱的覆岩结构存在较大差异,从而导致煤柱所承载的荷载出现不同;在煤柱宽度留设时,从采空区压实区到卸压区应逐渐减小,从卸压区到上煤层实体煤下应逐渐增大,采空区压实区煤柱宽度应小于实体煤区。通过建立工况条件下采空区边缘下方回撤通道数值模拟模型,确定了护巷煤柱合理留设宽度为18 m。 相似文献
15.
16.
合理宽度的留设是特厚煤层区段煤柱能否安全高效开采的关键。为了提高资源回采率,以韩家洼煤矿特厚煤层综放开采面为工程背景,对区段煤柱合理留设宽度进行了研究。通过现场观测调研,揭示了巷道在原支护方案下的变形特征和机理,运用稳定核区理论和极限平衡理论对特厚煤层综放面区段煤柱合理宽度进行了计算;并通过FLAC3D软件分别构建了三种区段煤柱宽度方案,从应力演化与塑性区扩展的角度进行数值模拟综合对比分析,从而优化确定合理区段煤柱尺寸为12 m;根据22401工作面的地质和生产条件,以提高煤炭的资源回收率为首要经济需求,以控制围岩变形、位移和裂隙发展为主要工程内涵,以积极主动地保持围岩的整体性为主要技术目标,基于工程类比的方法,采用非对称“锚杆+钢带+钢筋带+锚索”的联合支护技术。该研究成果可为类似条件煤矿区段煤柱留设提供参考和借鉴。 相似文献
17.
18.
选择合理的护巷煤柱尺寸是临空掘巷成功和安全的前提;以某矿30503工作面为背景,采用理论分析、数值模拟和现场实践相结合的方法,对上覆遗留煤柱和本煤层相邻采空区条件下临空掘巷区段煤柱的合理尺寸进行了研究。结果表明:通过理论分析遗留煤柱沿底板应力变化规律,确定区段煤柱留设尺寸范围应在7~10 m之间;运用数值模拟分析了不同煤柱宽度条件下临空巷道煤柱应力和变形破坏规律,综合理论分析和数值模拟得出留8 m煤柱合适。现场监测结果表明,留8 m煤柱时,临空巷道顶板最大变形量为359 mm,两帮变形量为66 mm,巷道围岩变形稳定,能够满足现场实际生产要求。 相似文献
19.
针对复合顶板沿空巷道煤柱合理尺寸难以确定及支护困难等问题,以泊江海子矿3-1煤层一面三巷布置的工作面为工程背景,采用理论分析和现场实测的方法,研究工作面回采后煤柱应力的分布规律。现场实测结果表明,工作面回采后煤柱应力沿侧向可分为低应力区和高应力区,低应力区距采空区边缘距离为14.5m,高应力区距采空区边缘距离为14.5~20m,最大应力峰值为29MPa,考虑到煤层裂隙发育、煤壁片帮等因素,综合确定沿空掘巷煤柱宽度为9m。同时结合具体地质条件进行沿空掘巷支护方案设计及矿压观测,巷道支护实践表明,试验巷道采用所确定的煤柱宽度及锚索网支护参数后,巷道围岩稳定,实现了工作面安全高效开采。 相似文献
20.
针对大部分煤矿沿空掘巷煤柱留设不合理造成煤炭资源浪费以及巷道难以维护的难题,采用数值模拟和力学分析相结合的方法,得到了采空区边缘区域应力峰值与原岩应力之间的应力集中系数,结合弹塑性力学计算最终确定了合理的煤柱宽度并应用于工程实践,为相似矿井煤柱宽度留设提供了借鉴。 相似文献