首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Asteroid 4 Vesta is the only preserved intact example of a large, differentiated protoplanet like those believed to be the building blocks of terrestrial planet accretion. Vesta accreted rapidly from the solar nebula in the inner asteroid belt and likely melted due to heat released due to the decay of 26Al. Analyses of meteorites from the howardite-eucrite-diogenite (HED) suite, which have been both spectroscopically and dynamically linked to Vesta, lead to a model of the asteroid with a basaltic crust that overlies a depleted peridotitic mantle and an iron core. Vesta??s crust may become more mafic with depth and might have been intruded by plutons arising from mantle melting. Constraints on the asteroid??s moments of inertia from the long-wavelength gravity field, pole position and rotation, informed by bulk composition estimates, allow tradeoffs between mantle density and core size; cores of up to half the planetary radius can be consistent with plausible mantle compositions. The asteroid??s present surface is expected to consist of widespread volcanic terrain, modified extensively by impacts that exposed the underlying crust or possibly the mantle. Hemispheric heterogeneity has been observed by poorly resolved imaging of the surface that suggests the possibility of a physiographic dichotomy as occurs on other terrestrial planets. Vesta might have had an early magma ocean but details of the early thermal structure are far from clear owing to model uncertainties and paradoxical observations from the HEDs. Petrological analysis of the eucrites coupled with thermal evolution modeling recognizes two possible mechanisms of silicate-metal differentiation leading to the formation of the basaltic achondrites: equilibrium partial melting or crystallization of residual liquid from the cooling magma ocean. A firmer understanding the plethora of complex physical and chemical processes that contribute to melting and crystallization will ultimately be required to distinguish among these possibilities. The most prominent physiographic feature on Vesta is the massive south polar basin, whose formation likely re-oriented the body axis of the asteroid??s rotation. The large impact represents the likely major mechanism of ejection of fragments that became the HEDs. Observations from the Dawn mission hold the promise of revolutionizing our understanding of 4 Vesta, and by extension, the nature of collisional, melting and differentiation processes in the nascent solar system.  相似文献   

2.
Emergence of a Habitable Planet   总被引:2,自引:0,他引:2  
We address the first several hundred million years of Earth’s history. The Moon-forming impact left Earth enveloped in a hot silicate atmosphere that cooled and condensed over ∼1,000 yrs. As it cooled the Earth degassed its volatiles into the atmosphere. It took another ∼2 Myrs for the magma ocean to freeze at the surface. The cooling rate was determined by atmospheric thermal blanketing. Tidal heating by the new Moon was a major energy source to the magma ocean. After the mantle solidified geothermal heat became climatologically insignificant, which allowed the steam atmosphere to condense, and left behind a ∼100 bar, ∼500 K CO2 atmosphere. Thereafter cooling was governed by how quickly CO2 was removed from the atmosphere. If subduction were efficient this could have taken as little as 10 million years. In this case the faint young Sun suggests that a lifeless Earth should have been cold and its oceans white with ice. But if carbonate subduction were inefficient the CO2 would have mostly stayed in the atmosphere, which would have kept the surface near ∼500 K for many tens of millions of years. Hydrous minerals are harder to subduct than carbonates and there is a good chance that the Hadean mantle was dry. Hadean heat flow was locally high enough to ensure that any ice cover would have been thin (<5 m) in places. Moreover hundreds or thousands of asteroid impacts would have been big enough to melt the ice triggering brief impact summers. We suggest that plate tectonics as it works now was inadequate to handle typical Hadean heat flows of 0.2–0.5 W/m2. In its place we hypothesize a convecting mantle capped by a ∼100 km deep basaltic mush that was relatively permeable to heat flow. Recycling and distillation of hydrous basalts produced granitic rocks very early, which is consistent with preserved >4 Ga detrital zircons. If carbonates in oceanic crust subducted as quickly as they formed, Earth could have been habitable as early as 10–20 Myrs after the Moon-forming impact.  相似文献   

3.
Good progress has been made in the past few years to better understand the XUV evolution trend of Sun-like stars, the capture and dissipation of hydrogen dominant envelopes of planetary embryos and protoplanets, and water loss from young planets around M dwarfs. This chapter reviews these recent developments. Observations of exoplanets and theoretical works in the near future will significantly advance our understanding of one of the fundamental physical processes shaping the evolution of solar system terrestrial planets.  相似文献   

4.
We review the geochemical observations of water, \(\mbox{D}/\mbox{H}\) and volatile element abundances of the inner Solar System bodies, Mercury, Venus, the Moon, and Mars. We focus primarily on the inventories of water in these bodies, but also consider other volatiles when they can inform us about water. For Mercury, we have no data for internal water, but the reducing nature of the surface of Mercury would suggest that some hydrogen may be retained in its core. We evaluate the current knowledge and understanding of venusian water and volatiles and conclude that the venusian mantle was likely endowed with as much water as Earth of which it retains a small but non-negligible fraction. Estimates of the abundance of the Moon’s internal water vary from Earth-like to one to two orders of magnitude more depleted. Cl, K, and Zn isotope anomalies for lunar samples argue that the giant impact left a unique geochemical fingerprint on the Moon, but not the Earth. For Mars, an early magma ocean likely generated a thick crust; this combined with a lack of crustal recycling mechanisms would have led to early isolation of the Martian mantle from later delivery of water and volatiles from surface reservoirs or late accretion. The abundance estimates of Martian mantle water are similar to those of the terrestrial mantle, suggesting some similarities in the water and volatile inventories for the terrestrial planets and the Moon.  相似文献   

5.
The planetary building blocks that formed in the terrestrial planet region were likely very dry, yet water is comparatively abundant on Earth. Here we review the various mechanisms proposed for the origin of water on the terrestrial planets. Various in-situ mechanisms have been suggested, which allow for the incorporation of water into the local planetesimals in the terrestrial planet region or into the planets themselves from local sources, although all of those mechanisms have difficulties. Comets have also been proposed as a source, although there may be problems fitting isotopic constraints, and the delivery efficiency is very low, such that it may be difficult to deliver even a single Earth ocean of water this way. The most promising route for water delivery is the accretion of material from beyond the snow line, similar to carbonaceous chondrites, that is scattered into the terrestrial planet region as the planets are growing. Two main scenarios are discussed in detail. First is the classical scenario in which the giant planets begin roughly in their final locations and the disk of planetesimals and embryos in the terrestrial planet region extends all the way into the outer asteroid belt region. Second is the Grand Tack scenario, where early inward and outward migration of the giant planets implants material from beyond the snow line into the asteroid belt and terrestrial planet region, where it can be accreted by the growing planets. Sufficient water is delivered to the terrestrial planets in both scenarios. While the Grand Tack scenario provides a better fit to most constraints, namely the small mass of Mars, planets may form too fast in the nominal case discussed here. This discrepancy may be reduced as a wider range of initial conditions is explored. Finally, we discuss several more recent models that may have important implications for water delivery to the terrestrial planets.  相似文献   

6.
The near absence of noble gases on earth, other than those of radioactive origin, indicates that the earth was formed by the accumulation of planetesimals; this process systematically excluded all constituents that did not enter into the solid phase. The atmosphere and the ocean with many of its dissolved salts have arisen from gases emitted from the earth's interior, a process that continues today. The oxygen in the earth's atmosphere plus a greater quantity that has been removed from the atmosphere to oxidize geologic materials, has arisen mainly from a small excess of photosynthesis over decay of organic material. The atmospheres of Mars and Venus have probably arisen in a manner similar to the atmosphere on earth, by emission from the planetary interiors. However, they have not received any oxygen from photosynthesis and so are nearly oxygen free. Mars has very little water in its atmosphere, and this can be explained by its lower than freezing average surface temperature. Venus also has very little water, and this requires an ad hoc explanation; one possibility is that Venus was formed from much drier planetesimals than was the earth. Mercury and the moon are virtually without atmospheres. Although some gases may be emitted from their interiors, they are presumably rapidly lost by escape. Whatever atmosphere they possess is probably due to the neutralized solar wind that impinges upon them. The outer planets retained volatiles, including hydrogen and helium, to a much greater extent than did the terrestrial planets.  相似文献   

7.
Geochemical investigation of Martian meteorites (SNC meteorites) yields important constraints on the chemical and geodynamical evolution of Mars. These samples may not be representative of the whole of Mars; however, they provide constraints on the early differentiation processes on Mars. The bulk composition of Martian samples implies the presence of a metallic core that formed concurrently as the planet accreted. The strong depletion of highly siderophile elements in the Martian mantle is only possible if Mars had a large scale magma ocean early in its history allowing efficient separation of a metallic melt from molten silicate. The solidification of the magma ocean created chemical heterogeneities whose ancient origin is manifested in the heterogeneous 142Nd and 182W abundances observed in different meteorite groups derived from Mars. The isotope anomalies measured in SNC meteorites imply major chemical fractionation within the Martian mantle during the life time of the short-lived isotopes 146Sm and 182Hf. The Hf-W data are consistent with very rapid accretion of Mars within a few million years or, alternatively, a more protracted accretion history involving several large impacts and incomplete metal-silicate equilibration during core formation. In contrast to Earth early-formed chemical heterogeneities are still preserved on Mars, albeit slightly modified by mixing processes. The preservation of such ancient chemical differences is only possible if Mars did not undergo efficient whole mantle convection or vigorous plate tectonic style processes after the first few tens of millions of years of its history.  相似文献   

8.
This paper is an introduction to volume 56 of the Space Science Series of ISSI, “From disks to planets—the making of planets and their proto-atmospheres”, a key subject in our quest for the origins and evolutionary paths of planets, and for the causes of their diversity. Indeed, as exoplanet discoveries progressively accumulated and their characterization made spectacular progress, it became evident that the diversity of observed exoplanets can in no way be reduced to the two classes of planets that we are used to identify in the solar system, namely terrestrial planets and gas or ice giants: the exoplanet reality is just much broader. This fact is no doubt the result of the exceptional diversity of the evolutionary paths linking planetary systems as a whole as well as individual exoplanets and their proto-atmospheres to their parent circumstellar disks: this diversity and its causes are exactly what this paper explores. For each of the main phases of the formation and evolution of planetary systems and of individual planets, we summarize what we believe we understand and what are the important open questions needing further in-depth examination, and offer some suggestions on ways towards solutions.We start with the formation mechanisms of circumstellar disks, with their gas and disk components in which chemical composition plays a very important role in planet formation. We summarize how dust accretion within the disk generates planet cores, while gas accretion on these cores can lead to the diversity of their fluid envelopes. The temporal evolution of the parent disk itself, and its final dissipation, put strong constraints on how and how far planetary formation can proceed. The radiation output of the central star also plays an important role in this whole story. This early phase of planet evolution, from disk formation to dissipation, is characterized by a co-evolution of the disk and its daughter planets. During this co-evolution, planets and their protoatmospheres not only grow, but they also migrate radially as a result of their interaction with the disk, thus moving progressively from their distance of formation to their final location. The formation of planetary fluid envelopes (proto-atmospheres and oceans), is an essential product of this planet formation scenario which strongly constrains their possible evolution towards habitability. We discuss the effects of the initial conditions in the disk, of the location, size and mass of the planetary core, of the disk lifetime and of the radiation output and activity of the central star, on the formation of these envelopes and on their relative extensions with respect to the planet core. Overall, a fraction of the planets retain the primary proto-atmosphere they initially accreted from the gas disk. For those which lose it in this early evolution, outgassing of volatiles from the planetary core and mantle, together with some contributions of volatiles from colliding bodies, give them a chance to form a “secondary” atmosphere, like that of our own Earth.When the disk finally dissipates, usually before 10 Million years of age, it leaves us with the combination of a planetary system and a debris disk, each with a specific radial distribution with respect to their parent star(s). Whereas the dynamics of protoplanetary disks is dominated by gas-solid dynamical coupling, debris disks are dominated by gravitational dynamics acting on diverse families of planetesimals. Solid-body collisions between them and giant impacts on young planetary surfaces generate a new population of gas and dust in those disks. Synergies between solar system and exoplanet studies are particularly fruitful and need to be stimulated even more, because they give access to different and complementary components of debris disks: whereas the different families of planetesimals can be extensively studied in the solar system, they remain unobserved in exoplanet systems. But, in those systems, long-wavelength telescopic observations of dust provide a wealth of indirect information about the unobserved population of planetesimals. Promising progress is being currently made to observe the gas component as well, using millimetre and sub-millimetre giant radio interferometers.Within planetary systems themselves, individual planets are the assembly of a solid body and a fluid envelope, including their planetary atmosphere when there is one. Their characteristics range from terrestrial planets through sub-Neptunes and Neptunes and to gas giants, each type covering most of the orbital distances probed by present-day techniques. With the continuous progress in detection and characterization techniques and the advent of major providers of new data like the Kepler mission, the architecture of these planetary systems can be studied more and more accurately in a statistically meaningful sense and compared to the one of our own solar system, which does not appear to be an exceptional case. Finally, our understanding of exoplanets atmospheres has made spectacular advances recently using the occultation spectroscopy techniques implemented on the currently operating space and ground-based observing facilities.The powerful new observing facilities planned for the near and more distant future will make it possible to address many of the most challenging current questions of the science of exoplanets and their systems. There is little doubt that, using this new generation of facilities, we will be able to reconstruct more and more accurately the complex evolutionary paths which link stellar genesis to the possible emergence of habitable worlds.  相似文献   

9.
The early development of Mars is of enormous interest, not just in its own right, but also because it provides unique insights into the earliest history of the Earth, a planet whose origins have been all but obliterated. Mars is not as depleted in moderately volatile elements as are other terrestrial planets. Judging by the data for Martian meteorites it has Rb/Sr 0.07 and K/U 19,000, both of which are roughly twice as high as the values for the Earth. The mantle of Mars is also twice as rich in Fe as the mantle of the Earth, the Martian core being small (20% by mass). This is thought to be because conditions were more oxidizing during core formation. For the same reason a number of elements that are moderately siderophile on Earth such as P, Mn, Cr and W, are more lithophile on Mars. The very different apparent behavior of high field strength (HFS) elements in Martian magmas compared to terrestrial basalts and eucrites may be related to this higher phosphorus content. The highly siderophile element abundance patterns have been interpreted as reflecting strong partitioning during core formation in a magma ocean environment with little if any late veneer. Oxygen isotope data provide evidence for the relative proportions of chondritic components that were accreted to form Mars. However, the amount of volatile element depletion predicted from these models does not match that observed — Mars would be expected to be more depleted in volatiles than the Earth. The easiest way to reconcile these data is for the Earth to have lost a fraction of its moderately volatile elements during late accretionary events, such as giant impacts. This might also explain the non-chondritic Si/Mg ratio of the silicate portion of the Earth. The lower density of Mars is consistent with this interpretation, as are isotopic data. 87Rb-87Sr, 129I-129Xe, 146Sm-142Nd, 182Hf-182W, 187Re-187Os, 235U-207Pb and 238U-206Pb isotopic data for Martian meteorites all provide evidence that Mars accreted rapidly and at an early stage differentiated into atmosphere, mantle and core. Variations in heavy xenon isotopes have proved complicated to interpret in terms of 244Pu decay and timing because of fractionation thought to be caused by hydrodynamic escape. There are, as yet, no resolvable isotopic heterogeneities identified in Martian meteorites resulting from 92Nb decay to 92Zr, consistent with the paucity of perovskite in the martian interior and its probable absence from any Martian magma ocean. Similarly the longer-lived 176Lu-176Hf system also preserves little record of early differentiation. In contrast W isotope data, Ba/W and time-integrated Re/Os ratios of Martian meteorites provide powerful evidence that the mantle retains remarkably early heterogeneities that are vestiges of core metal segregation processes that occurred within the first 20 Myr of the Solar System. Despite this evidence for rapid accretion and differentiation, there is no evidence that Mars grew more quickly than the Earth at an equivalent size. Mars appears to have just stopped growing earlier because it did not undergo late stage (>20 Myr), impacts on the scale of the Moon-forming Giant Impact that affected the Earth.  相似文献   

10.
Present natural data bases for abundances of the isotopic compositions of noble gases, carbon and nitrogen inventories can be found in the Sun, the solar wind, meteorites and the planetary atmospheres and crustal reservoirs. Mass distributions in the various volatile reservoirs provide boundary conditions which must be satisfied in modelling the history of the present atmospheres. Such boundary conditions are constraints posed by comparison of isotopic ratios in primordial volatile sources with the isotopic pattern which was found on the planets and their satellites. Observations from space missions and Earth-based spectroscopic telescope observations of Venus, Mars and Saturn's major satellite Titan show that the atmospheric evolution of these planetary bodies to their present states was affected by processes capable of fractionating their elements and isotopes. The isotope ratios of D/H in the atmospheres of Venus and Mars indicate evidence for their planetary water inventories. Venus' H2O content may have been at least 0.3% of a terrestrial ocean. Analysis of the D/H ratio on Mars imply that a global H2O ocean with a depth of ≤ 30 m was lost since the end of hydrodynamic escape. Calculations of the time evolution of the 15N/14N isotope anomalies in the atmospheres of Mars and Titan show that the Martian atmosphere was at least ≥ 20 times denser than at present and that the mass of Titan's early atmosphere was about 30 times greater than its present value. A detailed study of gravitational fractionation of isotopes in planetary atmospheres furthermore indicates a much higher solar wind mass flux of the early Sun during the first half billion years. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
The past decade has seen a wealth of new data, mainly from the Galilean satellites and Mars, but also new information on Mercury, the Moon and asteroids (meteorites). In parallel, there have been advances in our understanding of dynamo theory, new ideas on the scaling laws for field amplitudes, and a deeper appreciation on the diversity and complexity of planetary interior properties and evolutions. Most planetary magnetic fields arise from dynamos, past or present, and planetary dynamos generally arise from thermal or compositional convection in fluid regions of large radial extent. The relevant electrical conductivities range from metallic values to values that may be only about one percent or less that of a typical metal, appropriate to ionic fluids and semiconductors. In all planetary liquid cores, the Coriolis force is dynamically important. The maintenance and persistence of convection appears to be easy in gas giants and ice-rich giants, but is not assured in terrestrial planets because the quite high electrical conductivity of an iron-rich core guarantees a high thermal conductivity (through the Wiedemann-Franz law), which allows for a large core heat flow by conduction alone. This has led to an emphasis on the possible role of ongoing differentiation (growth of an inner core or “snow”). Although planetary dynamos mostly appear to operate with an internal field that is not very different from (2ρΩ/σ)1/2 in SI units where ρ is the fluid density, Ω is the planetary rotation rate and σ is the conductivity, theoretical arguments and stellar observations suggest that there may be better justification for a scaling law that emphasizes the buoyancy flux. Earth, Ganymede, Jupiter, Saturn, Uranus, Neptune, and probably Mercury have dynamos, Mars has large remanent magnetism from an ancient dynamo, and the Moon might also require an ancient dynamo. Venus is devoid of a detectable global field but may have had a dynamo in the past. Even small, differentiated planetesimals (asteroids) may have been capable of dynamo action early in the solar system history. Induced fields observed in Europa and Callisto indicate the strong likelihood of water oceans in these bodies. The presence or absence of a dynamo in a terrestrial body (including Ganymede) appears to depend mainly on the thermal histories and energy sources of these bodies, especially the convective state of the silicate mantle and the existence and history of a growing inner solid core. As a consequence, the understanding of planetary magnetic fields depends as much on our understanding of the history and material properties of planets as it does on our understanding of the dynamo process. Future developments can be expected in our understanding of the criterion for a dynamo and on planetary properties, through a combination of theoretical work, numerical simulations, planetary missions (MESSENGER, Juno, etc.) and laboratory experiments.  相似文献   

12.
Largest satellite of Saturn and the only in the solar system having a dense atmosphere, Titan is one of the key planetary bodies for astrobiological studies, due to several aspects. (i) Its analogies with planet Earth, in spite of much lower temperatures, with, in particular, a methane cycle on Titan analogous to the water cycle on Earth. (ii) The presence of an active organic chemistry, involving several of the key compounds of prebiotic chemistry. The recent data obtained from the Huygens instruments show that the complex organic matter in Titan’s low atmosphere is mainly concentrated in the aerosol particles. The formation of biologically interesting compounds may also occur in the deep water ocean, from the hydrolysis of complex organic material included in the chrondritic matter accreted during the formation of Titan. (iii) The possible emergence and persistence of Life on Titan. All ingredients which seem necessary for Life to appear and even develop – liquid water, organic matter and energy – are present on Titan. Consequently, it cannot be excluded that life may have emerged on or in Titan. In spite of the extreme conditions in this environment life may have been able to adapt and to persist. Many data are still expected from the Cassini-Huygens mission and future astrobiological exploration mission of Titan are now under consideration. Nevertheless, Titan already looks like another world, with an active organic chemistry, in the absence of permanent liquid water, on the surface: a natural laboratory for prebiotic-like chemistry.  相似文献   

13.
Water content and the internal evolution of terrestrial planets and icy bodies are closely linked. The distribution of water in planetary systems is controlled by the temperature structure in the protoplanetary disk and dynamics and migration of planetesimals and planetary embryos. This results in the formation of planetesimals and planetary embryos with a great variety of compositions, water contents and degrees of oxidation. The internal evolution and especially the formation time of planetesimals relative to the timescale of radiogenic heating by short-lived 26Al decay may govern the amount of hydrous silicates and leftover rock–ice mixtures available in the late stages of their evolution. In turn, water content may affect the early internal evolution of the planetesimals and in particular metal-silicate separation processes. Moreover, water content may contribute to an increase of oxygen fugacity and thus affect the concentrations of siderophile elements within the silicate reservoirs of Solar System objects. Finally, the water content strongly influences the differentiation rate of the icy moons, controls their internal evolution and governs the alteration processes occurring in their deep interiors.  相似文献   

14.
Determining the origin of volatiles on terrestrial planets and quantifying atmospheric loss during planet formation is crucial for understanding the history and evolution of planetary atmospheres. Using geochemical observations of noble gases and major volatiles we determine what the present day inventory of volatiles tells us about the sources, the accretion process and the early differentiation of the Earth. We further quantify the key volatile loss mechanisms and the atmospheric loss history during Earth’s formation. Volatiles were accreted throughout the Earth’s formation, but Earth’s early accretion history was volatile poor. Although nebular Ne and possible H in the deep mantle might be a fingerprint of this early accretion, most of the mantle does not remember this signature implying that volatile loss occurred during accretion. Present day geochemistry of volatiles shows no evidence of hydrodynamic escape as the isotopic compositions of most volatiles are chondritic. This suggests that atmospheric loss generated by impacts played a major role during Earth’s formation. While many of the volatiles have chondritic isotopic ratios, their relative abundances are certainly not chondritic again suggesting volatile loss tied to impacts. Geochemical evidence of atmospheric loss comes from the \({}^{3}\mathrm{He}/{}^{22}\mathrm{Ne}\), halogen ratios (e.g., F/Cl) and low H/N ratios. In addition, the geochemical ratios indicate that most of the water could have been delivered prior to the Moon forming impact and that the Moon forming impact did not drive off the ocean. Given the importance of impacts in determining the volatile budget of the Earth we examine the contributions to atmospheric loss from both small and large impacts. We find that atmospheric mass loss due to impacts can be characterized into three different regimes: 1) Giant Impacts, that create a strong shock transversing the whole planet and that can lead to atmospheric loss globally. 2) Large enough impactors (\(m_{\mathit{cap}} \gtrsim \sqrt{2} \rho_{0} (\pi h R)^{3/2}\), \(r_{\mathit{cap}}\sim25~\mbox{km}\) for the current Earth), that are able to eject all the atmosphere above the tangent plane of the impact site, where \(h\), \(R\) and \(\rho_{0}\) are the atmospheric scale height, radius of the target, and its atmospheric density at the ground. 3) Small impactors (\(m_{\mathit{min}}>4 \pi\rho_{0} h^{3}\), \(r_{\mathit {min}}\sim 1~\mbox{km}\) for the current Earth), that are only able to eject a fraction of the atmospheric mass above the tangent plane. We demonstrate that per unit impactor mass, small impactors with \(r_{\mathit{min}} < r < r_{\mathit{cap}}\) are the most efficient impactors in eroding the atmosphere. In fact for the current atmospheric mass of the Earth, they are more than five orders of magnitude more efficient (per unit impactor mass) than giant impacts, implying that atmospheric mass loss must have been common. The enormous atmospheric mass loss efficiency of small impactors is due to the fact that most of their impact energy and momentum is directly available for local mass loss, where as in the giant impact regime a lot of energy and momentum is ’wasted’ by having to create a strong shock that can transverse the entirety of the planet such that global atmospheric loss can be achieved. In the absence of any volatile delivery and outgassing, we show that the population of late impactors inferred from the lunar cratering record containing 0.1% \(M_{\oplus }\) is able to erode the entire current Earth’s atmosphere implying that an interplay of erosion, outgassing and volatile delivery is likely responsible for determining the atmospheric mass and composition of the early Earth. Combining geochemical observations with impact models suggest an interesting synergy between small and big impacts, where giant impacts create large magma oceans and small and larger impacts drive the atmospheric loss.  相似文献   

15.
The state of knowledge about the structure and composition of icy satellite interiors has been significantly extended by combining direct measurements from spacecraft, laboratory experiments, and theoretical modeling. The existence of potentially habitable liquid water reservoirs on icy satellites is dependent on the radiogenic heating of the rock component, additional contributions such as the dissipation of tidal energy, the efficiency of heat transfer to the surface, and the presence of substances that deplete the freezing point of liquid water. This review summarizes the chemical evolution of subsurface liquid water oceans, taking into account a number of chemical processes occuring in aqueous environments and partly related to material exchange with the deep interior. Of interest are processes occuring at the transitions from the liquid water layer to the ice layers above and below, involving the possible formation of clathrate hydrates and high-pressure ices on large icy satellites. In contrast, water-rock exchange is important for the chemical evolution of the liquid water layer if the latter is in contact with ocean floor rock on small satellites. The composition of oceanic floor deposits depends on ambient physical conditions and ocean chemistry, and their evolutions through time. In turn, physical properties of the ocean floor affect the circulation of oceanic water and related thermal effects due to tidally-induced porous flow and aqueous alteration of ocean floor rock.  相似文献   

16.
Cometary nuclei consist of ices intermixed with dust grains and are thought to be the least modified solar system bodies remaining from the time of planetary formation. Flyby missions to Comet P/Halley in 1986 showed that cometary dust is extremely rich in organics (∼50% by mass). However, this proportion appears to be variable among different comets. In comparison with the CI-chondritic abundances, the volatile elements H, C, and N are enriched in cometary dust indicating that cometary solid material is more primitive than CI-chondrites. Relative to dust in dense molecular clouds, bulk cometary dust preserves the abundances of C and N, but exhibits depletions in O and H. In most cases, the carbonaceous component of cometary particles can be characterized as a multi-component mixture of carbon phases and organic compounds. Cluster analysis identified a few basic types of compounds, such as elemental carbon, hydrocarbons, polymers of carbon suboxide and of cyanopolyynes. In smaller amounts, polymers of formaldehyde, of hydrogen cyanide and various unsaturated nitriles also are present. These compositionally simple types, probably, are essential "building blocks", which in various combinations give rise to the variety of involatile cometary organics. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Protoplanetary evolution is discussed in both its global and local aspects. The global turbulent evolution implies large scale average chemical fractionation and chondrule-sized grains as the building blocks of planetary and possibly also cometary material. Local processes such as electric discharges and associated flash heating of grains allow for chemical, mineralogical, and morphological alterations of the disk material. Large scale turbulence keeps the disk well stirred, however, time dependent (or intermittent) turbulence, associated with e.g. optical depth variations, could lead to dust sedimentation within the disk and subsequent planetesimal formation. Recent relevant astronomical observations of young T Tauri stars are briefly reviewed.  相似文献   

18.
Present-Day Sea Level Change: Observations and Causes   总被引:3,自引:0,他引:3  
Cazenave  A.  Cabanes  C.  Dominh  K.  Gennero  M.C.  Le Provost  C. 《Space Science Reviews》2003,108(1-2):131-144
We investigate climate-related processes causing variations of the global mean sea level on interannual to decadal time scale. We focus on thermal expansion of the oceans and continental water mass balance. We show that during the 1990s where global mean sea level change has been measured by Topex/Poseidon satellite altimetry, thermal expansion is the dominant contribution to the observed 2.5 mm/yr sea level rise. For the past decades, exchange of water between continental reservoirs and oceans had a small, but not totally negligible contribution (about 0.2 mm/yr) to sea level rise. For the last four decades, thermal contribution is estimated to about 0.5 mm/yr, with a possible accelerated rate of thermosteric rise during the 1990s. Topex/Poseidon shows an increase in mean sea level of 2.5 mm/yr over the last decade, a value about two times larger than reported by historical tide gauges. This would suggest that there has been significant acceleration of sea level rise in the recent past, possibly related to ocean warming. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
Lacking plate tectonics and crustal recycling, the long-term evolution of the crust-mantle system of Mars is driven by mantle convection, partial melting, and silicate differentiation. Volcanic landforms such as lava flows, shield volcanoes, volcanic cones, pyroclastic deposits, and dikes are observed on the martian surface, and while activity was widespread during the late Noachian and Hesperian, volcanism became more and more restricted to the Tharsis and Elysium provinces in the Amazonian period. Martian igneous rocks are predominantly basaltic in composition, and remote sensing data, in-situ data, and analysis of the SNC meteorites indicate that magma source regions were located at depths between 80 and 150 km, with degrees of partial melting ranging from 5 to 15 %. Furthermore, magma storage at depth appears to be of limited importance, and secular cooling rates of 30 to 40 K?Gyr?1 were derived from surface chemistry for the Hesperian and Amazonian periods. These estimates are in general agreement with numerical models of the thermo-chemical evolution of Mars, which predict source region depths of 100 to 200 km, degrees of partial melting between 5 and 20 %, and secular cooling rates of 40 to 50 K?Gyr?1. In addition, these model predictions largely agree with elastic lithosphere thickness estimates derived from gravity and topography data. Major unknowns related to the evolution of the crust-mantle system are the age of the shergottites, the planet’s initial bulk mantle water content, and its average crustal thickness. Analysis of the SNC meteorites, estimates of the elastic lithosphere thickness, as well as the fact that tidal dissipation takes place in the martian mantle indicate that rheologically significant amounts of water of a few tens of ppm are still present in the interior. However, the exact amount is controversial and estimates range from only a few to more than 200 ppm. Owing to the uncertain formation age of the shergottites it is unclear whether these water contents correspond to the ancient or present mantle. It therefore remains to be investigated whether petrologically significant amounts of water of more than 100 ppm are or have been present in the deep interior. Although models suggest that about 50 % of the incompatible species (H2O, K, Th, U) have been removed from the mantle, the amount of mantle differentiation remains uncertain because the average crustal thickness is merely constrained to within a factor of two.  相似文献   

20.
Numerical dynamo models are increasingly successful in modeling many features of the geomagnetic field. Moreover, they have proven to be a useful tool for understanding how the observations connect to the dynamo mechanism. More recently, dynamo simulations have also ventured to explain the surprising diversity of planetary fields found in our solar system. Here, we describe the underlying model equations, concentrating on the Boussinesq approximations, briefly discuss the numerical methods, and give an overview of existing model variations. We explain how the solutions depend on the model parameters and introduce the primary dynamo regimes. Of particular interest is the dependence on the Ekman number which is many orders of magnitude too large in the models for numerical reasons. We show that a minor change in the solution seems to happen at $\mbox {E}=3\mbox {$\times 10^{-6}$}$ whose significance, however, needs to be explored in the future. We also review three topics that have been a focus of recent research: field reversal mechanisms, torsional oscillations, and the influence of Earth’s thermal mantle structure on the dynamo. Finally we discuss the possibility of tidally or precession driven planetary dynamos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号