首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Speciation of mercury was accomplished by using a simple interface with photo-induced chemical vapour generation in a high performance liquid chromatography—atomic fluorescence spectrometry (HPLC-AFS) hyphenated system. Acetic acid and 2-mercaptoethanol in the mobile phase were used as photochemical reagent. The operating parameters were optimized to give limits of detection of 0.53 µg L?1, 0.22 µg L?1, 0.18 µg L?1 and 0.25 µg L?1 for inorganic mercury, methylmercury, ethylmercury and phenylmercury, respectively. The method was validated with the certified reference material DORM-2 and applied to the analysis of seafood samples. The HPLC-AFS hyphenated system is simple, environmentally friendly, and represents an attractive alternative to the conventional peroxothiosulfate-borohydride method.  相似文献   

2.
The speciation of Mn(II) and Mn(VII) is reported by ion pair chromatography. To optimize the separation, sample pH, ion pair reagent, Mn(II) complexing agent, and composition of mobile phase were characterized. The separation of Mn(II) and Mn(VII) was performed using ethylenediamine tetraacetic acid to complex Mn(II), tetrabutylammonium hydroxide as an ion pair reagent, and a C8 column. The separation of the manganese species was demonstrated by high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC ICP-MS). The conversion of Mn(VII) to Mn(II) occurred during the separation and influenced the quantification; hence, the factors affecting this process including the storage time, manganese species ratio, and sample matrix composition were evaluated and suitable calibration was demonstrated. The method was validated by characterization of the selectivity, specificity, linearity, limits of detection and quantification, repeatability, and intermediate precision. The detection limit for Mn(II) was 0.22 µg?L?1, while for Mn(VII), the value was 1.55 µg?L?1.  相似文献   

3.
In the present study, room-temperature ionic liquid (RTIL) 1-butyl-3-methylimidazolium hexafluorophosphate was used as extraction solvent in a liquid–liquid microextraction (LLME) procedure followed by liquid chromatography for determining 4-nonylphenol (4-NP) and 4-tert-octylphenol (4-t-OP) in environmental water samples. RTIL-based LLME was a simple, inexpensive, and fast sample preparation method, and its parameters such as extraction time, addition of salt, selection of phase ratio, and pH value were optimized. The optimized method had acceptable limits of detection (LOD) and a precision of 2?µg?L?1 and 8.1% for 4-NP and 0.6?µg?L?1 and 3.7% for 4-t-OP, respectively. The proposed method was successfully applied in river water and effluent from a sewage-treatment plant, and the recoveries spiked at 6?µg?L?1 and 25?µg?L?1 levels were in the range of 82–113%.  相似文献   

4.
A simple and reliable method has been developed for the rapid analysis of trace levels of malachite green from water samples using dispersive liquid–liquid microextraction and high-performance liquid chromatography-diode array detection. Factors relevant to the microextraction efficiency, such as the type and volume of extraction solvent, nature and volume of the disperser solvent, the effect of salt, sample solution temperature and the extraction time were investigated and optimised. Under the optimal conditions the linear dynamic range of malachite green was from 0.2 to 100.0?µg?L?1 with a correlation coefficient of 0.9962. The detection limit and limit of quantification were 0.1?µg?L?1 and 0.3?µg?L?1, respectively. The relative standard deviation (RSD) was less than 2.6% (n?=?5) and the recoveries of malachite green (5.0?µg?L?1) from water samples were in the range of 99.2?±?1.7%. Finally the proposed method was successfully applied for the analysis of malachite green from fish farming water samples.  相似文献   

5.
Almond skin was used as a biosorbent by solid-phase extraction for the preconcentration of manganese(II) before the determination by flame atomic absorption spectrometry. Characterization of almond skin was performed by infrared spectroscopy. The functional groups of the almond skin surface were shown to be beneficial for the adsorption of manganese(II). At pH 6.0, the manganese(II) ions were retained on the almond skin and afterward quantitatively eluted using 1.5?mol?L?1 nitric acid. The pH, flow rate and volume of sample, concentration, and flow rate of eluent and interfering ions were characterized. Using a sample size of 30?mL, a linear dynamic range of 1–120?µg?L?1 was obtained. A detection limit of 0.24?µg?L?1 manganese(II) and a relative standard deviation of 1.6% at 30?µg?L?1 were achieved. The accuracy of the present procedure was evaluated by the determination of manganese(II) in a certified reference material (GSB07-1189-2000). The protocol was also used for the determination of manganese(II) in wastewater. The fortified recoveries were from 99.0 to 99.4%.  相似文献   

6.
A new method for the simultaneous determination of 12 volatile organic compounds (trans-1,2-dichloroethene, 1,1,1-trichloroethane, benzene, 1,2-dichloroethane, trichloroethene, toluene, 1,1,2-trichloroethane, tetrachloroethene, ethylbenzene, m-, p-, o-xylene) in water samples by headspace solid phase microextraction (HS–SPME)–gas chromatography mass spectrometry (GC–MS) was described, using a 100?µm PDMS (polydimethylsiloxane) coated fibre. The response surface methodology was used to optimise the effect of the extraction time and temperature, as well as the influence of the salt addition in the extraction process. Optimal conditions were extraction time and temperature of 30?min and ?20°C, respectively, and NaCl concentration of 4?mol?L?1. The detection limits were in the range of 1.1?×?10?3–2.3?µg?L?1 for the 12 volatile organic compounds (VOCs). Global uncertainties were in the range of 4–68%, when concentrations decrease from 250?µg?L?1 down to the limits of quantification. The method proved adequate to detect VOCs in six river samples.  相似文献   

7.
A simple and robust analytical method for analysis of octyl- and nonylphenol as well as their short-chained ethoxylates in river water was proposed. Quantification of these analytes was performed by high-performance liquid chromatography with fluorescence detection after isolation using solid phase extraction with polytetrafluoroethylene sorbent. The method allowed one to obtain about 80–100% recovery for octylphenol and its ethoxylates and 70–80% for nonylphenol and its ethoxylates. Also, there was no need for additional sample cleaning before chromatographic analysis. The limit of detection was 0.01?µg?L?1 for octylphenol and its ethoxylates and 0.03?µg?L?1 for nonylphenol and its ethoxylates. The proposed method was used for quantitation of octyl- and nonylphenol together with their short-chained ethoxylates. Nonylphenol, nonylphenol mono- and diethoxylates were detected at concentrations ranging from 0.12 to 0.53?µg?L?1. Octylphenol, octylphenol mono- and diethoxylates were detected in four out of eleven samples at concentrations ranging from 0.03 to 0.17?µg?L?1. High concentrations of nonylphenol and its ethoxylates were found in the samples, despite the fact that their use in European countries was forbidden several years ago.  相似文献   

8.
Dispersive liquid–liquid microextraction (DLLME) technique was successfully used as a sample preparation method for graphite furnace atomic absorption spectrometry (GF AAS). In this extraction method, 500 μL methanol (disperser solvent) containing 34 μL carbon tetrachloride (extraction solvent) and 0.00010 g Salen(N,N′‐bis(salicylidene)ethylenediamine) (chelating agent) was rapidly injected by syringe into the water sample containing cadmium ions (interest analyte). Thereby, a cloudy solution formed. The cloudy state resulted from the formation of fine droplets of carbon tetrachloride, which have been dispersed, in bulk aqueous sample. At this stage, cadmium reacts with Salen(N,N′‐bis(salicylidene)‐ethylenediamine), and therefore, hydrophobic complex forms which is extracted into the fine droplets of carbon tetrachloride. After centrifugation (2 min at 5000 rpm), these droplets were sedimented at the bottom of the conical test tube (25 ± 1 μL). Then a 20 μL of sedimented phase containing enriched analyte was determined by GF AAS. Some effective parameters on extraction and complex formation, such as extraction and disperser solvent type and their volume, extraction time, salt effect, pH and concentration of the chelating agent have been optimized. Under the optimum conditions, the enrichment factor 122 was obtained from only 5.00 mL of water sample. The calibration graph was linear in the range of 2‐21 ng L?1 with a detection limit of 0.5 ng L?1. The relative standard deviation (R.S.D.s) for ten replicate measurements of 20 ng L?1 of cadmium was 2.9%. The relative recoveries of cadmium in tap, sea and rain water samples at a spiking level of 5 and 10 ng L?1 are 99, 94, 97 and 96%, respectively. The characteristics of the proposed method have been compared with cloud point extraction (CPE), on‐line liquid‐liquid extraction, single drop microextraction (SDME), on‐line solid phase extraction (SPE) and co‐precipitation based on bibliographic data. Therefore, DLLME combined with GF AAS is a very simple, rapid and sensitive method, which requires low volume of sample (5.00 mL).  相似文献   

9.
Chemical sensors relying on graphene-based materials have been widely used for electrochemical determination of metal ions and have demonstrated excellent signal amplification. This study reports an electrochemically reduced graphene oxide (ERGO)/mercury film (HgF) nanocomposite-modified pencil graphite electrode (PGE) prepared through successive electrochemical reduction of graphene oxide (GO) sheets and an in situ plated HgF. The ERGO-PG-HgFE, in combination with dimethylglyoxime (DMG) and square-wave adsorptive cathodic stripping voltammetry (SW-AdCSV), was evaluated for the determination of Ni2+ in tap and natural river water samples. A single-step electrode pre-concentration approach was employed for the in situ Hg-film electroplating, metal-chelate complex formation, and non-electrolytic adsorption at –0.7 V. The current response due to nickel-dimethylglyoxime [Ni(II)-DMG2] complex reduction was studied as a function of experimental paratmeters including the accumulation potential, accumulation time, rotation speed, frequency and amplitude, and carefully optimized for the determination of Ni2+ at low concentration levels (μg?L?1) in pH 9.4 of 0.1 M NH3–NH4Cl buffer. The reduction peak currents were linear with the Ni2+ concentration between 2 and 16?μg?L?1. The limits of detection and quantitation were 0.120?±?0.002?µg?L?1 and 0.401?±?0.007?µg?L?1 respectively, for the determination of Ni2+ at an accumulation time of 120?s. The ERGO-PG-HgFE further demonstrated a highly selective stripping response toward Ni2+ determination compared to Co2+. The electrode was found to be sufficiently sensitive to determine metal ions in water samples at 0.1?µg?L?1, well below the World Health Organization standards.  相似文献   

10.
Electromembrane extraction (EME) is a powerful extraction and preconcentration technique for ionizable species. However, the ionic contents in the sample can influence the extraction efficiency and system stability due to electrolysis. In this work, the electromembrane extraction of chromium(VI) was developed using various levels of ionic samples. 2-Nitrophenyl octyl ether was the most suitable supported liquid membrane that delayed the electrolytic occurrence of air bubbles at the electrodes due to its high viscosity and high dielectric constant properties. The electromembrane extraction method was optimized using 5?mM NaCl (630?µS?cm?1); the applied potential was 100?V and the extraction time was 15?min. The enrichment factor of 80 was obtained over a linear working range of 10.0–80.0?µg?L?1. The method performance was tested using mineral water, drinking water, tap water, and surface water. The method recoveries based on matrix-matched calibration were 95–125% with standard deviations within 15%.  相似文献   

11.
Simultaneous analysis of homotaurine and its homologous, taurine, is a highly challenging issue, especially in matrices they exist simultaneously. A simple precolumn derivatization procedure combined with high-performance liquid chromatography–fluorescence detection was developed for simultaneous determination of homotaurine and taurine in marine macro-algae. The analytes were derivated with o-phthalaldehyde at an ambient temperature and alkaline medium. Calibration curves were linear in the ranges of 50–2500 µg L?1 for homotaurine and 100–2500 µg L?1 for taurine with the coefficients of determination higher than 0.998. Limits of detection of homotaurine and taurine were 15 and 30 µg L?1, respectively. Intraday (n = 6) and inter-day (n = 4) precisions of the method were satisfactory with relative standard deviations less than 6.0%. Good recoveries (>94%) were acquired by the method for extraction of homotaurine and taurine from algae matrices. Liquid chromatography–mass spectrometry was also used to confirm detection of the analytes in algae samples. The data suggest that the method was successfully applied to simultaneous determination of homotaurine and taurine in algae samples.  相似文献   

12.
A liquid-phase microextraction (LPME) method was employed for preconcentration of selenium as piazselenol complex in aqueous samples. The samples reacted with o-phenylenediamine in 0.1?M HCl at 90°C for 15?min, and then LPME was performed. A microdrop of carbon tetrachloride was applied as the extracting solvent. After extraction, the microdrop was introduced directly into the injection port of gas chromatography for analysis. Several important extraction parameters such as the type of organic solvent, sample and organic drop volumes, salt concentration, stirring rate, and exposure time were controlled and optimized. In the proposed LPME, the extraction was achieved by suspending a 3?µL carbon tetrachloride drop from the tip of a microsyringe immersed in 12.5?mL of aqueous solution. Under optimized conditions, a dynamic linear range was obtained in the range of 20–1000?µg?L?1. The preconcentration factor and the limit of detection of selenium in this method were 91 and 0.9?µg?L?1, respectively. The optimized procedure was successfully applied to the extraction and determination of selenium in different types of real samples. The relative standard deviations for the spiking levels of 50–100?µg?L?1 in the real samples were in the range of 3.2–6.1%, and the relative errors were located in the range of ?5.4 to 5%.  相似文献   

13.
Total dissolved and labile concentrations of Cd(II), Cu(II), Ni(II) and Pb(II) were determined at six locations of the Bourgas Gulf of the Bulgarian Black Sea coast. Solid phase extraction procedure based on monodisperse, submicrometer silica spheres modified with 3-aminopropyltrimethoxysilane followed by the electrothermal atomic absorption spectrometry (ETAAS) was developed and applied to quantify the total dissolved metal concentrations in sea water. Quantitative sorption of Cd, Cu, Ni and Pb was achieved in the pH range 7.5–8, for 30?min, adsorbed elements were easily eluted with 2?mL 2?mol?L?1 HNO3. Since the optimal pH for quantitative sorption coincides with typical pH of Black Sea water (7.9–8.2), on-site pre-concentration of the analytes without any additional treatment was possible. Detection limits achieved for total dissolved metal quantification were: Cd 0.002?µg?L?1, Cu 0.005?µg?L?1, Ni 0.03?µg?L?1, Pb 0.02?µg?L?1 and relative standard deviations varied from 5–13% for all studied elements (for typical Cd, Cu, Ni and Pb concentrations in Black Sea water). Open pore diffusive gradients in thin films (DGT) technique was employed for in-situ sampling and pre-concentration of the sea water and in combination with ETAAS was used to determine the proportion of dynamic (mobile and kinetically labile) species of Cd(II), Cu(II), Ni(II) and Pb(II) in the sea water. Obtained results showed strong complexation for Cu and Pb with sea water dissolved organic matter. The ratios between DGT-labile and total dissolved concentrations found for Cu(II) and Pb(II) were in the range 0.2–0.4. For Cd and Ni, these ratios varied from 0.6 to 0.8, suggesting higher degree of free and kinetically labile species of these metals in sea water.  相似文献   

14.
《Analytical letters》2012,45(17):2769-2779
A sensitive method for simultaneous determination of organic and inorganic mercury species has been developed and is presented in this study. The method is based on complex formation of mercury species with the emetine dithiocarbamate (emetine-CS2) ligand, HPLC separation, and tris(2,2′-bipyridine)ruthenium(III) chemiluminescence detection. The complexation reactions of the mercury species and emetine-CS2 ligand occurred instantaneously upon the addition of emetine-CS2 solution to the solution containing the mercury species. The complete separation of these complexes was achieved using an ODS column with 20 mM NaH2PO4-acetonitrile (52:48, v/v) containing 30 mM NaClO4 as an ion-pair reagent. The calibration graphs of these complexes were linear in the range from 1–100 µg/L. The detection limits were 0.27 µg/L, 0.33 µg/L, 0.39 µg/L, and 0.17 µg/L for methylmercury, ethylmercury, phenylmercury, and the mercury ion, respectively, at a signal-to-noise ratio of 3. The developed technique was validated by analyzing certified reference materials, CRM7402-a (cod fish, NMIJ) and CE464 (tuna fish, ERM), in combination with sonication-assisted acid leaching and liquid-liquid extraction. The emetine-CS2 ligand has been used for extraction, separation, and detection of mercury species. The results determined using the proposed method were in good agreement with the values of the certified reference materials. The MeHg+ and EtHg+ recoveries for the spiked samples were found to be almost 100%.  相似文献   

15.
A simple and sensitive method has been developed and validated for the determination of abamectin B1a (ABA B1a), emamectin B1a (EMA B1a) benzoate and ivermectin H2B1a (IVM H2B1a) in soils. The avermectins (AVMs) residues were extracted from soils with acetonitrile/water (9?:?1, v/v) and then were purified on C18 solid-phase extraction (SPE) cartridge. After being derivatised by N-methylimidazole (N-MIM) and trifluoroacetic anhydride (TFAA), the residues of three AVMs were analysed by high-performance liquid chromatography with fluorescence detection (HPLC-FLD). The method was validated in terms of system suitability, linearity, selectivity, precision, recovery, specificity and stability. There was a good linear relationship (R 2?>?0.99) for three AVMs ranged from 0.01 to 5?µg?mL?1. The LOD and LOQs of ABA B1a, EMA B1a benzoate and IVM H2B1a for standard solutions were 1.1–1.7 and 3.6–5.7?µg?L?1 respectively. The accuracy of AVMs in soils was from 83.7 to 115.5% with precision less than or equal to 12.4%. Using the developed method, 9 soil samples with 9.3–12806.3?µg?kg?1 of AVMs residues had been detected.  相似文献   

16.
Liquid chromatography coupled to tandem mass spectrometry with a triple quadrupole analyser was used to determine selected (medium) polar organic pollutants—isoproturon, diuron and pentachlorophenol, as the herbicides simazine, atrazine, terbuthilazine, alachlor, and metolachlor—in treated water from urban solid-waste leachates. Two millilitres of water was preconcentrated by on-line trace enrichment (solid-phase extraction liquid chromatography) which allowed rapid analysis, but still with a satisfactory sensitivity, as the limits of quantification were 0.05?µg?L?1, while the limits of detection were in the range of 0.001–0.01?µg?L?1. Confirmation of the identity of compounds was ensured by the use of two tandem mass spectrometry transitions. Moreover, a study of matrix effects was thoroughly investigated by applying the developed procedure to different ground and surface waters. A simple dilution of the water sample with high-performance-liquid-chromatography-grade water was sufficient to minimize and/or remove this undesirable effect in all water samples tested, this approach being feasible due to the excellent sensitivity of the method.  相似文献   

17.
A novel inhibition-based glucose oxidase (GOx) biosensor for environmental chromium(VI) detection is described. An electropolymerized aniline membrane has been prepared on a platinum electrode containing ferrocene as electron transfer mediator, on which GOx is cross-linked by glutaraldehyde. The mechanism of the redox reaction on the electrode and the performance of the sensor are studied. The sensor's response to glucose decreases when it is inhibited by chromium(VI), with a lower detection limit of 0.49?µg?L?1, and the linear response range is divided into two parts, one of which is 0.49–95.73?µg?L?1 and the other is 95.73?µg?1 to8.05?mg?L?1. The enzyme membrane is shown to be completely reactivated after inhibition, retaining 90% activity over more than forty days. Interference to chromium(VI) determination from lead(II), copper(II), cadmium(II), chromium(III), cobalt(II), tin(II) and nickel(II) is found to be minimal, while high concentrations of mercury(II) and silver(I) may interfere with the determination of trace chromium(VI). The sensor has been used for chromium(VI) determination in soil samples with good results.  相似文献   

18.
The method relies on selective complexation of As(III) with a suitable chelating agent followed by dispersive liquid–liquid microextraction (DLLME) method. Flame atomic absorption spectrometry (FAAS) equipped with microsample introduction system was utilised for determination of As(III). 1-Undecanol and acetone were used as extraction solvent and disperser solvent respectively. Some effective parameters on complex formation and extraction have been optimised. Under the optimum conditions, the enrichment factor of 108 for As(III) was obtained from 9.8?mL of water samples. The calibration graph was linear in the range of 2–15?µg?L?1 with detection limits of 0.60?µg?L?1 for As(III). The relative standard deviation (R.S.D.) for ten replicate measurements of 5.00?µ?gL?1 of As(III) was 6.2%. Operation simplicity and high enrichment factors are the main advantages of DLLME for the determination of As(III) without necessity for hydride generation in water samples.  相似文献   

19.
ABSTRACT

The aim of this work was to develop and validate a method using online solid-phase extraction and ultra-high-performance liquid chromatography coupled to tandem mass spectrometry to determine residues of 22 veterinary drugs including sulfonamides, amphenicols, fluoroquinolones, benzimidazoles, trimethoprim (TMP) and oxytetracycline (OTC) in water from fee-fishing ponds. The optimal analytical conditions were as follows: XBridge C8 SPE column, Acquity UPLC CSH C18 analytical column, sample loading with water:methanol (98:2, v/v), mobile phase of water with 0.1% acetic acid:methanol (with gradient elution) and eluent flow rate of 0.3 mL min?1. Quantification was performed in selected reaction monitoring mode and sulfadimethoxine-d6, ciprofloxacin-d8, florfenicol-d3 and albendazole-d3 were used as internal standards. Water samples collected from 11 fee-fishing ponds showed the presence of residues of FF (0.42–0.74 µg L?1), albendazole (0.05–0.31 µg L?1) and thiabendazole (0.45 µg L?1). Thiamphenicol and TMP were detected at concentrations lower than the limits of quantification of the method (0.1 and 0.001 µg L?1, respectively).  相似文献   

20.
Novel and fast deep eutectic solvent (DES)-based homogeneous liquid–liquid microextraction (HLLME) was applied for the extraction of copper from vegetable samples followed by flame atomic absorption spectrometry (FAAS). 1,5-diphenyl carbazone (DPC) was used as the chelating agent, and a DES was used as the extraction media. The utilized DES was based on benzyl triphenyl phosphonium bromide and ethylene glycol in a 1:8?mole ratio. The phase separation phenomenon was occurred by changing of sample temperature. Several factors influencing the extraction efficiency were investigated and optimized. Under the optimized conditions, an enhancement factor of 64 was obtained. The limit of detection, based on three signal-to-noise ratio, and limit of quantification were found to be 0.13?µg L?1 and 5.0?µg L?1, respectively. The calibration curve was linear within the range of 5.0–250?µg L?1 with r2 > 0.9957. Intra- and inter-day relative standard deviations (%) of 2.1% and 2.6% were obtained at the concentration of 25?µg L?1. The accuracy of the proposed method was evaluated by analyzing a tomato leaves certified reference material and the results were to be in agreement with the certified value. Finally, the feasibility of the method was successfully confirmed by determination of copper in spinach, lettuce, broccoli, potato, carrot and parsley samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号