首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Type-2 fuzzy controllers have been mostly viewed as black-box function generators. Revealing the analytical structure of any type-2 fuzzy controller is important as it will deepen our understanding of how and why a type-2 fuzzy controller functions and lay a foundation for more rigorous system analysis and design. In this study, we derive and analyze the analytical structure of an interval type-2 fuzzy controller that uses the following identical elements: two nonlinear interval type-2 input fuzzy sets for each variable, four interval type-2 singleton output fuzzy sets, a Zadeh AND operator, and the Karnik-Mendel type reducer. Through dividing the input space of the interval type-2 fuzzy controller into 15 partitions, the input-output relationship for each local region is derived. Our derivation shows explicitly that the controller is approximately equivalent to a nonlinear proportional integral or proportional differential controller with variable gains. Furthermore, by comparing with the analytical structure of its type-1 counterpart, potential advantages of the interval type-2 fuzzy controller are analyzed. Finally, the reliability of the analysis results and the effectiveness of the interval type-2 fuzzy controller are verified by a simulation and an experiment.  相似文献   

2.
Interval type-2 fuzzy inverse controller design in nonlinear IMC structure   总被引:1,自引:0,他引:1  
In the recent years it has been demonstrated that type-2 fuzzy logic systems are more effective in modeling and control of complex nonlinear systems compared to type-1 fuzzy logic systems. An inverse controller based on type-2 fuzzy model can be proposed since inverse model controllers provide an efficient way to control nonlinear processes. Even though various fuzzy inversion methods have been devised for type-1 fuzzy logic systems up to now, there does not exist any method for type-2 fuzzy logic systems. In this study, a systematic method has been proposed to form the inverse of the interval type-2 Takagi-Sugeno fuzzy model based on a pure analytical method. The calculation of inverse model is done based on simple manipulations of the antecedent and consequence parts of the fuzzy model. Moreover, the type-2 fuzzy model and its inverse as the primary controller are embedded into a nonlinear internal model control structure to provide an effective and robust control performance. Finally, the proposed control scheme has been implemented on an experimental pH neutralization process where the beneficial sides are shown clearly.  相似文献   

3.
This paper proposes a new reinforcement-learning method using online rule generation and Q-value-aided ant colony optimization (ORGQACO) for fuzzy controller design. The fuzzy controller is based on an interval type-2 fuzzy system (IT2FS). The antecedent part in the designed IT2FS uses interval type-2 fuzzy sets to improve controller robustness to noise. There are initially no fuzzy rules in the IT2FS. The ORGQACO concurrently designs both the structure and parameters of an IT2FS. We propose an online interval type-2 rule generation method for the evolution of system structure and flexible partitioning of the input space. Consequent part parameters in an IT2FS are designed using Q-values and the reinforcement local-global ant colony optimization algorithm. This algorithm selects the consequent part from a set of candidate actions according to ant pheromone trails and Q-values, both of which are updated using reinforcement signals. The ORGQACO design method is applied to the following three control problems: (1) truck-backing control; (2) magnetic-levitation control; and (3) chaotic-system control. The ORGQACO is compared with other reinforcement-learning methods to verify its efficiency and effectiveness. Comparisons with type-1 fuzzy systems verify the noise robustness property of using an IT2FS.  相似文献   

4.
Synchronization of the fractional order chaotic systems is extensively studied in recent years due to its potential applications in many branches of science and engineering. The main problems in this field are that the dynamics of the system in hand are often uncertain and are perturbed by external disturbances. Also the unknown nonlinear functions in the system dynamics are generally complicated and in many practical applications we have measurement errors and unavailable states. In this paper, a novel robust and asymptotically stable controller is proposed to synchronize uncertain fractional order chaotic systems. Its design is based on linear matrix inequality (LMI) technique. Furthermore, an observer is presented to estimate the unavailable states. A general type-2 fuzzy system (GT2FS) based on α-plane representation with Gaussian secondary membership functions (MF) and type-2 non-singleton fuzzification is proposed to approximate the unknown complex nonlinear functions in the dynamics of system. The input uncertainties associated with the observer error and the malfunctioning of the input devices are modeled by interval type-2 fuzzy MFs instead of crisp numbers. To decrease the computational cost of the GT2FS, a simple type-reduction method is proposed. The antecedent parameters of GT2FS are tuned based on a modified form of social spider optimization (SSO) algorithm. The simulation examples show that the proposed control scheme gives high performance in the presence of unknown functions, external disturbances and unavailable states. The performance of GT2FS with different α-levels and different fuzzification methods are compared with type-1 and interval type-2 fuzzy systems in several examples.  相似文献   

5.
This paper proposes a self-evolving interval type-2 fuzzy neural network (SEIT2FNN) with online structure and parameter learning. The antecedent parts in each fuzzy rule of the SEIT2FNN are interval type-2 fuzzy sets and the fuzzy rules are of the Takagi–Sugeno–Kang (TSK) type. The initial rule base in the SEIT2FNN is empty, and the online clustering method is proposed to generate fuzzy rules that flexibly partition the input space. To avoid generating highly overlapping fuzzy sets in each input variable, an efficient fuzzy set reduction method is also proposed. This method independently determines whether a corresponding fuzzy set should be generated in each input variable when a new fuzzy rule is generated. For parameter learning, the consequent part parameters are tuned by the rule-ordered Kalman filter algorithm for high-accuracy learning performance. Detailed learning equations on applying the rule-ordered Kalman filter algorithm to the SEIT2FNN consequent part learning, with rules being generated online, are derived. The antecedent part parameters are learned by gradient descent algorithms. The SEIT2FNN is applied to simulations on nonlinear plant modeling, adaptive noise cancellation, and chaotic signal prediction. Comparisons with other type-1 and type-2 fuzzy systems in these examples verify the performance of the SEIT2FNN.   相似文献   

6.
This paper proposes a type-2 self-organizing neural fuzzy system (T2SONFS) and its hardware implementation. The antecedent parts in each T2SONFS fuzzy rule are interval type-2 fuzzy sets, and the consequent part is of Mamdani type. Using interval type-2 fuzzy sets in T2SONFS enables it to be more robust than type-1 fuzzy systems. T2SONFS learning consists of structure and parameter identification. For structure identification, an online clustering algorithm is proposed to generate rules automatically and flexibly distribute them in the input space. For parameter identification, a rule-ordered Kalman filter algorithm is proposed to tune the consequent-part parameters. The learned T2SONFS is hardware implemented, and implementation techniques are proposed to simplify the complex computation process of a type-2 fuzzy system. The T2SONFS is applied to nonlinear system identification and truck backing control problems with clean and noisy training data. Comparisons between type-1 and type-2 neural fuzzy systems verify the learning ability and robustness of the T2SONFS. The learned T2SONFS is hardware implemented in a field-programmable gate array chip to verify functionality of the designed circuits.   相似文献   

7.
The popular linear PID controller is mostly effective for linear or nearly linear control problems. Nonlinear PID controllers, however, are needed in order to satisfactorily control (highly) nonlinear plants, time-varying plants, or plants with significant time delay. This paper extends our previous papers in which we show rigorously that some fuzzy controllers are actually nonlinear PI, PD, and PID controllers with variable gains that can outperform their linear counterparts. In the present paper, we study the analytical structure of an important class of two- and three-dimensional fuzzy controllers. We link the entire class, as opposed to one controller at a time, to nonlinear PI, PD, and PID controllers with variable gains by establishing the conditions for the former to structurally become the latter. Unlike the results in the literature, which are exclusively for the fuzzy controllers using linear fuzzy sets for the input variables, this class of fuzzy controllers employs nonlinear input fuzzy sets of arbitrary types. Our structural results are thus more general and contain the existing ones as special cases. Two concrete examples are provided to illustrate the usefulness of the new results.  相似文献   

8.
The type-2 fuzzy models can handle the system uncertainties directly based on the type-2 fuzzy sets. In this paper, the Takagi–Sugeno fuzzy model approach is extended to the stability analysis and controller design for interval type-2 (IT2) fuzzy systems with time-varying delay. Delay-dependent robust stability criteria are developed in terms of linear matrix inequalities by using the improvement technique of free-weighting matrices. Less conservative results are obtained by considering the information contained in the footprint of uncertainty. Finally, two simulation examples are presented to illustrate the effectiveness of the theoretical results. One is provided to show the merits of the proposed method, the other based on the continuous stirred tank reactor model is given to illustrate the design processes of IT2 fuzzy controller for a nonlinear system with parameter uncertainties.  相似文献   

9.
The interval type-2 Takagi–Sugeno fuzzy systems have been proposed to handle nonlinear systems subject to parameter uncertainties. In this paper, a new type of state feedback controller, namely, interval type-2 regional switching fuzzy controller, is proposed to conceive less-conservative stabilisation conditions, which is switched by basing on the values of system states. To further reduce the conservativeness in the stability analysis, the information of lower and upper membership functions is also considered. Stability conditions for the interval type-2 fuzzy closed-loop systems are presented in the form of linear matrix inequalities (LMIs). Simulation examples are provided to illustrate the effectiveness of the proposed method.  相似文献   

10.
Analysis of direct action fuzzy PID controller structures   总被引:17,自引:0,他引:17  
The majority of the research work on fuzzy PID controllers focuses on the conventional two-input PI or PD type controller proposed by Mamdani (1974). However, fuzzy PID controller design is still a complex task due to the involvement of a large number of parameters in defining the fuzzy rule base. This paper investigates different fuzzy PID controller structures, including the Mamdani-type controller. By expressing the fuzzy rules in different forms, each PLD structure is distinctly identified. For purpose of analysis, a linear-like fuzzy controller is defined. A simple analytical procedure is developed to deduce the closed form solution for a three-input fuzzy inference. This solution is used to identify the fuzzy PID action of each structure type in the dissociated form. The solution for single-input-single-output nonlinear fuzzy inferences illustrates the effect of nonlinearity tuning. The design of a fuzzy PID controller is then treated as a two-level tuning problem. The first level tunes the nonlinear PID gains and the second level tunes the linear gains, including scale factors of fuzzy variables. By assigning a minimum number of rules to each type, the linear and nonlinear gains are deduced and explicitly presented. The tuning characteristics of different fuzzy PID structures are evaluated with respect to their functional behaviors. The rule decoupled and one-input rule structures proposed in this paper provide greater flexibility and better functional properties than the conventional fuzzy PHD structures.  相似文献   

11.
两轮移动机器人(2WMR)本身具有多变量和非线性等特征,从而使其控制变得复杂。当2WMR在倾斜的表面上移动时,控制问题变得更加复杂。针对2WMR的非线性模型,设计2WMR的广义二型模糊逻辑平衡控制器和位置控制器。针对广义二型模糊逻辑控制器(GT2FLC)中前、后件中参数难以设定的问题,通过量子粒子群算法(QPSO)优化隶属函数中的参数。针对GT2FLC和区间二型模糊逻辑控制器(IT2FLC)在不同斜面上对移动2WMR的平衡和位置控制的效果进行进一步的对比分析,并干扰对控制效果的影响。仿真结果表明,GT2FLC具有更好的抗干扰能力。  相似文献   

12.
A direct adaptive interval type-2 fuzzy neural network (IT2-FNN) controller is designed for the first time in hypersonic flight control. The generic hypersonic flight vehicle is a multi-input multi-output system whose longitudinal model is high-order, highly nonlinear, tight coupling and most of all includes big uncertainties. Interval type-2 fuzzy sets with Gaussian membership functions are used in antecedent and consequent parts of fuzzy rules. The IT2-FNN directly outputs elevator deflection and throttle setting which make the GHFV track the altitude command signal and meanwhile maintain its velocity. The parameter adaptive law of IT2-FNN is derived using backpropagation method. The deviation of the control signal from the nominal dynamic inversion control signal is used as the reference output signal of IT2-FNN. The tracking errors of velocity and altitude are used as inputs of IT2-FNN. Tracking differentiator is designed to form an arranged transition process (ATP) of the command signal as well as ATP’s high-order derivatives. Nonlinear state observer is designed to get the approximations of velocity, altitude as well as their high-order derivatives. Simulation results validate the effectiveness and robustness of the proposed controller especially under big uncertainties.  相似文献   

13.
This paper proposes a recurrent self-evolving interval type-2 fuzzy neural network (RSEIT2FNN) for dynamic system processing. An RSEIT2FNN incorporates type-2 fuzzy sets in a recurrent neural fuzzy system in order to increase the noise resistance of a system. The antecedent parts in each recurrent fuzzy rule in the RSEIT2FNN are interval type-2 fuzzy sets, and the consequent part is of the Takagi-Sugeno-Kang (TSK) type with interval weights. The antecedent part of RSEIT2FNN forms a local internal feedback loop by feeding the rule firing strength of each rule back to itself. The TSK-type consequent part is a linear model of exogenous inputs. The RSEIT2FNN initially contains no rules; all rules are learned online via structure and parameter learning. The structure learning uses online type-2 fuzzy clustering. For the parameter learning, the consequent part parameters are tuned by a rule-ordered Kalman filter algorithm to improve learning performance. The antecedent type-2 fuzzy sets and internal feedback loop weights are learned by a gradient descent algorithm. The RSEIT2FNN is applied to simulations of dynamic system identifications and chaotic signal prediction under both noise-free and noisy conditions. Comparisons with type-1 recurrent fuzzy neural networks validate the performance of the RSEIT2FNN.  相似文献   

14.
In this paper, we provide a complete framework for the design of genetically evolved cognitive tracking controller based on interval type-2 (IT2) fuzzy cognitive map (FCM). We construct the cognitive controller based on a nonlinear controller by transforming its representation into a FCM. This representation gives the opportunity to prove the stability of the cognitive controller in the framework of nonlinear control theory. Moreover, with the deployment of IT2-fuzzy sets which are known to be capable to handle high level of uncertainty, the proposed cognitive controller has the ability to deal with uncertainty that are encountered in real-time world applications. To accomplish the design of the cognitive controller, we present a systematic approach based on genetic algorithm to optimize its parameters and learn fuzzy rules by extracting them from model space (e.g., a set of rules). Within the paper, all steps in constructing and designing the IT2-FCM-based cognitive controller are presented. We first show the performance improvements of the proposed IT2-FCM-based tracking controller with extensive and comparative simulation results and then with experimental results that were collected on real-world mobile robot. The results clearly show the superiority of proposed cognitive control systems when compared to its conventional and fuzzy controller counterparts. We believe that the proposed genetically evolved design approach of the IT2-FCM-based cognitive controller will provide a bridge between the well-developed cognitive sciences and control theory.  相似文献   

15.
In this paper, an interval type-2 fuzzy sliding-mode controller (IT2FSMC) is proposed for linear and nonlinear systems. The proposed IT2FSMC is a combination of the interval type-2 fuzzy logic control (IT2FLC) and the sliding-mode control (SMC) which inherits the benefits of these two methods. The objective of the controller is to allow the system to move to the sliding surface and remain in on it so as to ensure the asymptotic stability of the closed-loop system. The Lyapunov stability method is adopted to verify the stability of the interval type-2 fuzzy sliding-mode controller system. The design procedure of the IT2FSMC is explored in detail. A typical second order linear interval system with 50% parameter variations, an inverted pendulum with variation of pole characteristics, and a Duffing forced oscillation with uncertainty and disturbance are adopted to illustrate the validity of the proposed method. The simulation results show that the IT2FSMC achieves the best tracking performance in comparison with the type-1 Fuzzy logic controller (T1FLC), the IT2FLC, and the type-1 fuzzy sliding-mode controller (T1FSMC).  相似文献   

16.
Intelligent vehicles can effectively improve traffic congestion and road traffic safety. Adaptive cruise following-control (ACFC) is a vital part of intelligent vehicles. In this paper, a new hierarchical vehicle-following control strategy is presented by synthesizing the variable time headway model, type-2 fuzzy control, feedforward + fuzzy proportion integration (PI) feedback (F+FPIF) control, and inverse longitudinal dynamics model of vehicles. Firstly, a traditional variable time headway model is improved considering the acceleration of the lead car. Secondly, an interval type-2 fuzzy logic controller (IT2 FLC) is designed for the upper structure of the ACFC system to simulate the driver’s operating habits. To reduce the nonlinear influence and improve the tracking accuracy for the desired acceleration, the control strategy of F+FPIF is given for the lower control structure. Thirdly, the lower control method proposed in this paper is compared with the fuzzy PI control and the traditional method (no lower controller for tracking desired acceleration) separately. Meanwhile, the proportion integration differentiation (PID), linear quadratic regulator (LQR), subsection function control (SFC) and type-1 fuzzy logic control (T1 FLC) are respectively compared with the IT2 FLC in control performance under different scenes. Finally, the simulation results show the effectiveness of IT2 FLC for the upper structure and F+FPIF control for the lower structure.   相似文献   

17.
This paper proposes a self-adaptive interval type-2 neural fuzzy network (SAIT2NFN) control system for the high-precision motion control of permanent magnet linear synchronous motor (PMLSM) drives. The antecedent parts in the SAIT2NFN use interval type-2 fuzzy sets to handle uncertainties in PMLSM drives, including payload variation, external disturbance, and sense noise. The SAIT2NFN is firstly trained to model the inverse dynamics of PMLSM through concurrent structure and parameter learning. The fuzzy rules in the SAIT2NFN can be generated automatically by using online clustering algorithm to obtain a suitable-sized network structure, and a back propagation is proposed to adjust all network parameters. Then, a robust SAIT2NFN inverse control system that consists of the SAIT2NFN and an error-feedback controller is proposed to control the PMLSM drive in a changing environment. Moreover, the Kalman filtering algorithm with a dead zone is derived using Lyapunov stability theorem for online fine-tuning all network parameters to guarantee the convergence of the SAIT2NFN. Experimental results show that the proposed SAIT2NFN control system achieves the best tracking performance in comparison with type-1 NFN control systems.  相似文献   

18.
This paper first proposes a type-2 neural fuzzy system (NFS) learned through its type-1 counterpart (T2NFS-T1) and then implements the built IT2NFS-T1 in a field-programmable gate array (FPGA) chip. The antecedent part of each fuzzy rule in the T2NFS-T1 uses interval type-2 fuzzy sets, while the consequent part uses a Takagi-Sugeno-Kang (TSK) type with interval combination weights. The T2NFS-T1 uses a simplified type-reduction operation to reduce system training time and hardware implementation cost. Given a training data set, a TSK type-1 NFS is first learned through structure and parameter learning. The built type-1 fuzzy logic system (FLS) is then extended to a type-2 FLS, where highly overlapped type-1 fuzzy sets are merged into interval type-2 fuzzy sets to reduce the total number of fuzzy sets. Finally, the rule consequent and antecedent parameters in the T2NFS-T1 are tuned using a hybrid of the gradient descent and rule-ordered recursive least square (RLS) algorithms. Simulation results and comparisons with various type-1 and type-2 FLSs verify the effectiveness and efficiency of the T2NFS-T1 for system modeling and prediction problems. A new hardware circuit using both parallel-processing and pipeline techniques is proposed to implement the learned T2NFS-T1 in an FPGA chip. The T2NFS-T1 chip reduces the hardware implementation cost in comparison to other type-2 fuzzy chips.  相似文献   

19.
A novel fractional order (FO) fuzzy Proportional-Integral-Derivative (PID) controller has been proposed in this paper which works on the closed loop error and its fractional derivative as the input and has a fractional integrator in its output. The fractional order differ-integrations in the proposed fuzzy logic controller (FLC) are kept as design variables along with the input–output scaling factors (SF) and are optimized with Genetic Algorithm (GA) while minimizing several integral error indices along with the control signal as the objective function. Simulations studies are carried out to control a delayed nonlinear process and an open loop unstable process with time delay. The closed loop performances and controller efforts in each case are compared with conventional PID, fuzzy PID and PIλDμ controller subjected to different integral performance indices. Simulation results show that the proposed fractional order fuzzy PID controller outperforms the others in most cases.  相似文献   

20.
Type-1 fuzzy sets cannot fully handle the uncertainties. To overcome the problem, type-2 fuzzy sets have been proposed. The novelty of this paper is using interval type-2 fuzzy logic controller (IT2FLC) to control a flexible-joint robot with voltage control strategy. In order to take into account the whole robotic system including the dynamics of actuators and the robot manipulator, the voltages of motors are used as inputs of the system. To highlight the capabilities of the control system, a flexible joint robot which is highly nonlinear, heavily coupled and uncertain is used. In addition, to improve the control performance, the parameters of the primary membership functions of IT2FLC are optimized using particle swarm optimization (PSO). A comparative study between the proposed IT2FLC and type-1 fuzzy logic controller (T1FLC) is presented to better assess their respective performance in presence of external disturbance and unmodelled dynamics. Stability analysis is presented and the effectiveness of the proposed control approach is demonstrated by simulations using a two-link flexible-joint robot driven by permanent magnet direct current motors. Simulation results show the superiority of the IT2FLC over the T1FLC in terms of accuracy, robustness and interpretability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号