首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 96 毫秒
1.
裂纹扩展是齿轮传动的主要故障,而且裂纹所处位置对裂纹扩展行为作用明显。为探讨齿轮副轮齿裂纹位置与裂纹扩展寿命的关系,提出几种相邻轮齿含分度圆裂纹和齿根裂纹的双裂纹齿轮副模型,基于ABAQUS建立齿轮副的三齿啮合有限元分析模型,分析不同载荷作用下分度圆裂纹和齿根裂纹尖端的主应力值和应力强度因子值;结合Pairs方程探讨分度圆裂纹扩展和齿根裂纹扩展寿命之间的关系。结果表明:齿轮副单齿啮合时的裂纹尖端应力比齿轮副双齿啮合时的裂纹尖端应力大,而且裂纹尖端的弯曲应力明显大于剪切应力;同一载荷同一裂纹深度时,齿根裂纹尖端的应力强度因子值大于分度圆裂纹尖端的应力强度因子值;相同加载时,含齿根裂纹齿轮的裂纹扩展寿命小于含分度圆裂纹齿轮的裂纹扩展寿命;裂纹扩展过程中,齿根裂纹深度和分度圆裂纹深度之比非定值,而且深度之比与载荷无关。  相似文献   

2.
齿轮在工作中承受交变载荷的作用,会在齿根产生疲劳裂纹等故障,裂纹发生扩展不仅会影响传动精度,甚至可能造成重大的安全事故与经济损失,因此,亟需开展对齿根裂纹扩展演化规律的研究.为此,利用复变函数法构造Westergaard应力函数,分析了裂纹尖端复杂的应力场问题,并依据最大周向拉应力强度因子理论确定裂纹扩展临界条件;结合裂纹扩展过程中裂纹尖端不连续和奇异性问题的实际复杂情况,对扩展有限元法进行修正,建立了齿根裂纹扩展的有限元模型.研究计算裂纹成核点位置和齿轮基体结构中腹板外径、腹板孔与成核处对应位置关系的裂纹扩展路径,得到了不同影响因素的裂纹扩展规律并验证了修正有限元模型的准确性和有效性.研究结果进一步丰富了齿根疲劳裂纹扩展演化机理的研究.  相似文献   

3.
顾浩  朱如鹏 《机械工程师》2006,(11):104-105
建立了齿轮齿根裂纹的二维模型;从断裂力学和弹性力学基本原理出发,与有限元方法相结合,给出了齿轮根部裂纹应力强度因子和裂纹扩展方向的数学计算方法;同时结合算例,运用ANSYS软件计算了应力强度因子和裂纹扩展角的大小。  相似文献   

4.
《机械传动》2017,(2):17-21
为研究高速列车齿轮的齿根裂纹扩展特性,在有限元软件ABAQUS中建立齿轮副模型并通过静力学分析,以确定裂纹萌生位置。基于线弹性断裂力学理论,在软件ABAQUS中建立含齿根初始裂纹的斜齿轮模型,计算裂纹前缘不同节点处的应力强度因子;研究齿根裂纹自动扩展的方式及轨迹,通过计算得到齿根裂纹的扩展寿命。在此研究的基础上,探讨了载荷大小等因素对裂纹扩展寿命及轨迹的影响规律。研究表明,裂纹扩展速率先慢后快,载荷对裂纹扩展寿命的影响十分明显。  相似文献   

5.
为了研究齿根裂纹对硬齿面齿轮疲劳寿命的影响,以某渐开线硬齿面齿轮为研究对象,基于断裂力学方法和疲劳裂纹扩展理论,分析研究了齿轮齿根疲劳裂纹扩展机制;建立了考虑载荷大小、初始裂纹大小以及初始裂纹位置等因素影响的硬齿面齿轮齿根裂纹扩展剩余寿命分析模型,研究了齿根裂纹不同扩展阶段的应力强度因子演变规律与裂纹扩展机制;根据某渐开线硬齿面齿轮副弯曲疲劳试验数据,对所建计算模型进行了分析与验证,证明了模型的准确性。结果表明,与Ⅱ型裂纹、Ⅲ型裂纹相比,Ⅰ型裂纹应力强度因子最大,从齿面到裂纹深度方向,其值逐渐减小;随载荷、裂纹长度、裂纹宽度以及初始裂纹距齿宽中心位置的距离等因素的增大,裂纹扩展剩余寿命都随之减小。  相似文献   

6.
当齿轮发生故障时,时变啮合刚度的变化能够反映齿轮故障特征大小。因此,时变啮合刚度在齿轮传动过程中是一个重要的动力学参数。提出一种新的齿根裂纹啮合刚度计算方法,即解析有限元法(Analytical-finite element method,A-FM)。考虑到齿轮发生故障时,啮合刚度解析模型计算精度较低,将应力强度因子引入裂纹齿轮的啮合刚度计算过程。首先定义应力强度因子与啮合刚度之间的关系,通过建立齿轮接触模型计算裂纹尖端附近的应力强度因子,然后将计算结果替代解析模型中故障刚度部分。由于应力强度因子能够敏感地识别齿根裂纹的局部微小变化,故该方法相比于解析法具有更高的计算精度,相比于有限元法具备更快的计算效率。同时,建立6自由度动力学模型,通过对其振动响应进行分析,仿真结果验证了所提方法的可行性。  相似文献   

7.
《机械传动》2017,(4):101-105
齿根过渡圆角对齿根应力有着重要影响,而齿根应力是齿根疲劳裂纹扩展的重要影响因素,因此,研究齿根过渡圆角半径对齿根裂纹扩展的影响十分必要。建立3种不同过渡圆角半径的直齿轮,假设齿根初始裂纹在相同位置,初始裂纹长度一致,基于ABAQUS软件研究齿根裂纹扩展规律。结果表明,不同过渡圆角半径下的齿根裂纹扩展总体趋势一致,但扩展前期过渡圆角半径越大,裂纹越向深入齿轮轮缘方向扩展,扩展后期过渡圆角半径越大,裂纹越往齿顶方向扩展。过渡圆角半径对齿轮临界裂纹长度影响较小。相同裂纹长度下,过渡圆角半径越大,裂纹尖端Mises应力越小,裂纹扩展速率越小,齿轮的裂纹剩余寿命越长。  相似文献   

8.
结合动力学仿真和扩展有限单元法(XFEM),对某城轨车辆齿轮箱齿轮进行裂纹扩展分析。通过动力学分析,确定扩展有限元模型初始裂纹的位置及载荷加载位置;建立扩展有限元模型,对计算结果进行分析,总结齿轮齿根裂纹扩展规律。结果表明,齿根处最大弯曲应力位置不随齿轮啮合过程而改变,裂纹起裂位置应在此位置附近;裂纹尖端应力值在量化一裂纹长度到达0. 61前低速率稳定增加,0. 61后裂纹进入瞬断区,裂纹尖端应力值变化明显;结合有限元动力学及扩展有限元分析发现,裂纹扩展初期属于Ⅰ型裂纹,在裂纹扩展的中后期属于Ⅰ、Ⅱ混合型裂纹;不同加载位置结果显示,扩展初期裂纹偏转角度随着加载位置的下移而减小,扩展后期裂纹整体沿着齿厚方向进行扩展。  相似文献   

9.
为研究高速动车组齿轮的齿根裂纹的应力强度因子,结合有限元法和作图法确定了裂纹萌生位置。基于线弹性断裂力学理论,以Abaqus为工具,研究了齿根初始裂纹前缘不同节点处的应力强度因子大小及变化规律,通过对比,确定Ⅰ型应力强度因子在裂纹扩展中占主导地位;在此研究的基础上,探讨了Ⅰ型应力强度因子随载荷、裂纹半径、裂纹形状等因素的变化规律。结果表明,载荷对Ⅰ型应力强度因子大小影响最为显著且呈线性关系;裂纹形状对Ⅰ型应力强度因子在裂纹前缘的分布规律影响十分明显。  相似文献   

10.
以风电齿轮为例,利用有限元分析软件ABAQUS,建立了太阳轮简化力学模型,并进行了齿根弯曲应力的分析计算。分析结果与传统计算方法得出的结果基本一致,从而验证了简化模型的正确性。在此基础上,研究了齿轮齿根裂纹特性,分析了初始裂纹长度和外加载荷对应力强度因子(SIF)的影响。结果表明,随着初始裂纹长度的增加,应力强度因子也随之增加,并且应力强度因子与载荷等比例增加。在初始裂纹长度和载荷相同的情况下,应力强度因子KⅠ远大于KⅡ和KⅢ,即在弯曲应力作用下张开型裂纹为风电齿轮轮齿折断失效的主要原因。  相似文献   

11.
Analytical and experimental studies were performed to investigate the effect of gear rim thickness on crack propagation life. The FRANC (FRacture Analysis Code) computer program was used to simulate crack propagation. The FRANC program used principles of linear elastic fracture mechanics, finite element modelling, and a unique re-meshing scheme to determine crack tip stress distributions, estimate stress intensity factors, and model crack propagation. Various fatigue crack growth models were used to estimate crack propagation life, based on the calculated stress intensity factors. Experimental tests were performed in a gear fatigue rig to validate predicted crack propagation results. Test gears were installed with special crack propagation gauges in the tooth fillet region to measure bending fatigue crack growth. Good correlation between predicted and measured crack growth was achieved when the fatigue crack closure concept was introduced into the analysis. As the gear rim thickness decreased, the compressive cyclic stress in the gear tooth fillet region increased. This retarded crack growth and increased the number of crack propagation cycles to failure.  相似文献   

12.
基于齿根应变测试技术和优化理论提出了齿轮时变啮合刚度反求计算方法,并将其应用于齿轮故障机理研究。构建了齿根动态应力与时变啮合刚度反问题模型,并搭建齿轮裂纹故障应变测试实验台来采集齿根应变;建立了相对应的有限元模型并将计算应变与测量应变代入反问题模型,从而实现齿轮啮合刚度的反向求解。计算结果表明,相比解析法和有限元法,所提方法显著提高了求解精度并且具备更高的可靠性。建立了齿根裂纹故障的齿轮系统动力学模型,通过对动力学响应进行时域及频域分析来揭示齿轮裂纹故障机理。  相似文献   

13.
非对称齿廓齿轮弯曲疲劳强度理论分析与试验   总被引:11,自引:0,他引:11  
为提高齿轮承载能力设计齿轮两侧压力角不等的非对称渐开线新齿形,推导双压力角非对称齿廓齿轮工作齿侧与非工作齿侧的渐开线齿廓方程和齿根过渡曲线方程,通过迭代计算和优化策略提出非对称齿廓齿轮疲劳强度解析法计算公式。编制生成非对称齿轮齿廓的参数化程序,在此基础上建立非对称齿廓齿轮有限元分析模型。通过解析法对不同压力角组合的非对称齿廓齿轮弯曲应力和危险截面位置计算得出,随着工作齿侧压力角的增大齿根最大弯曲应力逐渐降低,单齿啮合区向齿顶偏移;通过对有限元模型进行计算得出的结果与解析法一致,应用最小二乘法拟合出非对称齿廓齿轮齿根弯曲应力随工作齿侧压力角变化的计算公式。采用数控电火花线切割方法加工制造非对称与标准齿廓齿轮,在高频疲劳试验机上采用双齿脉动加载方法对其进行疲劳强度试验。试验结果表明,非对称齿廓齿轮在相同寿命下比对称齿轮极限载荷提高了50%,非对称齿廓齿轮的应力值变化趋势与前两种方法是一致的。  相似文献   

14.
裂纹对齿轮轮齿结构振动的影响   总被引:9,自引:0,他引:9  
建立具有裂纹的齿轮轮齿的动力学模型,分析齿轮轮齿发生裂纹后轮齿结构的动力响应及动力特性,并对裂纹出现位置和裂纹尺寸对齿轮结构动力特性的影响进行深入探讨;通过分析计算和有限元数值模拟验证表明,裂纹发生位置对齿轮轮齿振型影响较大,在裂纹发生处振型发生突变;而裂纹大小对其振型和固有频率影响都较大,当裂纹出现后齿轮固有频率发生下降,振型也发生变化,随着裂纹深度的增加,固有频率更加下降,低阶下降显著,而高阶下降缓慢,振型也与无裂纹的情形完全不同。这显示出裂纹对齿轮轮齿结构振动的影响随裂纹尺寸的增加而强烈。  相似文献   

15.
齿根过渡曲线形状对齿轮强度的影响很大。利用SolidWorks齿轮参数化建模,其中齿根过渡曲线采用多段圆弧;基于啮合齿轮的接触分析,以齿根最大von-Mises应力的极小值为目标变量,采用ANSYS Workbench对齿根过渡曲线形状进行了优化研究,优化后的过渡曲线可以大幅度改善齿轮齿根受力情况、降低齿轮损坏的机率。通过实验验证了本方法的可行性,同时对获取最佳齿根过渡曲线形状具有理论指导意义。  相似文献   

16.
采用有限元法研究了齿面摩擦力对滚.磨工艺制造的、齿根部有沉切的齿轮齿根应力的影响。结果表明:摩擦对滚-磨工艺齿轮齿根应力的影响不容忽视,考虑摩擦时,齿根最大拉、压应力随摩擦因数的增大而增大,其中最大拉应力增加的幅度比最大压应力大,当摩擦因数从0增大到0.2时,齿根最大拉应力增加比率为19.08%,晟大压应力增加比率为3.16%;有沉切时齿面摩擦力对齿根弯曲应力的影响比没沉切时要大。  相似文献   

17.
介绍了非对称渐开线塑料齿轮弯曲应力解析法的计算公式,根据尼曼实验曲线得出了重合度系数的解析表达式,并推导了齿顶到各特性啮合点的距离公式。通过实例计算了各特性啮合点的齿根弯曲应力,说明了非对称渐开线塑料齿轮比对称塑料齿轮具有更高的承载能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号