首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
近年来,全氟烷基酸(perfluoroalkyl acids,PFAAs)在我国的各种环境介质中被广泛检出,对生态环境和人体健康构成了潜在威胁.本研究利用大流量主动采样器收集广州、太古、昆明、厦门、南昌、绵阳、南京、青岛、北京和天津等10个城市及五指山地区的大气颗粒物,利用被动采样技术收集除南京和天津外9个城市和地区的大气颗粒物,调查颗粒物中的全氟辛烷羧酸(perfluorooctanoic acid,PFOA)和全氟辛烷磺酸(perfluorooctane sulfonate acid,PFOS)的污染特征和来源.主动采样方法揭示了PFAAs的时空分布特征.空间分布上,10个典型城市中,PFOA浓度范围为0.08—25 pg·m~(-3),0.11—36 ng·g~(-1);PFOS浓度范围为(0.12—14 pg·m~(-3),0.19—9.4 ng·g~(-1)),五指山PFOA(0.23—1.2 pg·m~(-3),0.16—0.83 ng·g~(-1))和PFOS(0.31—0.93 pg·m~(-3),0.31—1.1 ng·g~(-1))的浓度低于10个典型城市.PFOA和PFOS浓度整体上呈现东部中部西部背景点的趋势.时间变化上,广州市大气颗粒物中PFOA浓度没有呈现显著的随时间的变化趋势,PFOS浓度在秋冬季(4.2±4.7 pg·m~(-3),2.1±1.9 ng·g~(-1))低于春夏季(6.3±3.9 pg·m~(-3),4.7±1.6 ng·g~(-1)).五指山PFOS浓度在旱季(0.48±0.23 pg·m~(-3),0.57±0.22 ng·g~(-1))和雨季(0.52±0.24 pg·m~(-3),0.56±0.27 ng·g~(-1))处于同一水平.其他9城市PFAAs的浓度随时间变化趋势具有显著差异.10个典型城市PFAAs的来源主要与排放源的分布有关,背景点五指山主要受长距离迁移的影响.大气被动采样获得的PFAAs浓度与主动采样具有显著差异,较长的采样时间可能造成PFAAs的积累.在一定的时间和空间范围内,被动与主动采样获得的浓度变化趋势呈现一致规律,揭示了被动采样方法的适用性.PFOA的采样速率为18±16 m~3·d~(-1),PFOS的采样速率为3.1±2.4 m~3·d~(-1).针对PFAAs的被动采样捕集理论和适用范围还有待进一步研究.  相似文献   

2.
于2015年夏季(6—8月)和冬季(12月、2016年1—2月)利用汞形态分析仪(Tekran 1130/1135/2537B)对宁波市不同形态大气汞进行了连续监测,并对其含量特征和来源进行分析.结果表明,夏季气态单质汞(GEM)、颗粒态汞(PBM)及活性气态汞(RGM)浓度范围分别为1.51—4.88 ng·m~(-3)(均值2.50 ng·m~(-3))、10.95—646.90 pg·m~(-3)(均值155.49 pg·m~(-3))和8.64—316.68 pg·m~(-3)(均值88.22 pg·m~(-3));GEM含量主要受到大气长距离输送和气象条件的影响,PBM受交通影响较大,而RGM受到工业排放及气象条件的影响.冬季GEM、PBM及RGM浓度范围分别为1.73—5.33 ng·m~(-3)(均值2.89 ng·m~(-3))、133.87—1723.99 pg·m~(-3)(均值713.15 pg·m~(-3))和17.52—309.17 pg·m~(-3)(均值96.94 pg·m~(-3));GEM受长距离输送的影响,PBM除来自燃煤和交通外,还受到生物质燃烧和烟花爆竹排放的影响,而RGM的主要来源是工业排放.后向气团轨迹分析结果表明,我国北部为高浓度汞源,而海上气团携带汞含量较低.  相似文献   

3.
PM10作为大气污染物监测的主要指标之一,探究大气PM10浓度对大气环境质量和人体健康评价具有重要意义。黄、渤海滨海带包括京、津和辽、冀、鲁、苏等工、农业大省,区域大气PM10污染的时空分布和来源特征具有复杂性和典型性。在锦州、北京、天津、烟台、青岛、连云港和盐城7个城市布设10个采样点,含7个城市点和3个农村点,开展为期一年的大气颗粒物的采样;同时,于冬季1月和夏季7月在锦州、天津和烟台进行合计60 d的加密采样,藉以确定研究区域大气PM10的时空分布和来源特征。结果表明,黄、渤海滨海带大气年均PM10总浓度为(129’18)"g·m~(-3),单月最低值出现在2015年7月盐城农村样点15"g·m~(-3),最高值为2015年3月北京城市点307"g·m~(-3)。盐城大气PM10浓度(城市点(85’27)"g·m~(-3)和农村点(66’35)"g·m~(-3))显著低于其他样点大气PM10浓度。渤海滨海带中西部的京(140’68"g·m~(-3))、津(169’60"g·m~(-3))两市大气PM10年均浓度显著高于东部的锦州(125’41"g·m~(-3))和烟台(109’31"g·m~(-3));而且黄海滨海带大气PM10年均浓度(114"g·m~(-3))显著低于渤海滨海带年均浓度(136"g·m~(-3)),总体上表现出西高东低、北高南低的特征。黄、渤海滨海带城市点和农村点年均浓度分别为(129’18)"g·m~(-3)和(112’30)"g·m~(-3);农村点春冬季大气PM10浓度和城市点浓度相当,无显著差异,夏秋季大气PM10浓度略低于城市浓度,表明农村地区大气颗粒物污染情况也较为严重,需受到关注。区域内PM10浓度季节变化整体表现为春冬高、夏秋低。利用多元回归分析初步判断黄、渤海滨海带PM10属于复合来源,大气PM10浓度约30%的变化与降水、人均能耗和沙尘天气相关。黄、渤海滨海带大气PM10浓度的昼夜变化不大,大气PM10浓度与气温呈现正相关,与风速和降水呈现负相关,表现为受各种气象因素综合作用的影响。  相似文献   

4.
为了研究海洋背景区域大气中多氯联苯(PCBs)的污染状况,于冬、春和夏季在福建省沿海岛屿东山岛连续采集大气颗粒物样品.结果显示,东山岛大气颗粒物中PCBs浓度范围为0.11—16.95 pg·m~(-3),平均值5.53±4.31 pg·m~(-3).通过对比其他区域发现,东山岛大气颗粒物中PCBs处于较低水平,其含量与海洋背景区域相当.PCBs浓度季节变化明显,表现为冬春季高而夏季低.冬季,PCBs以高氯取代化合物为主,而春、夏季以低氯取代化合物为主.气团来源的季节性变化、气象条件参数(如降雨量、温度、大气压、风速、相对湿度、水气压)是影响PCBs浓度变化的主要因素.东山岛大气颗粒物中PCBs的干沉降通量为1.34 ng·m~(-2)·d~(-1),冬春季沉降通量明显高于夏季,按照东山岛海域覆盖面积(36200 km~2)估算,每年PCBs以干沉降入海通量约为12.84 kg.  相似文献   

5.
在北京市市区/交通干道(A地质大学东门、B地质大学测试楼顶),工业区(C首钢焦化、D高井热电厂)和背景点(E十三陵),同时采集了冬季大气颗粒物PM_(10)样品.利用US EPA 1613B方法,采用同位素稀释、高分辩率气相色谱/高分辩率质谱(HRGC/MS)联用技术,对比分析了PM_(10)中17种二噁英(PCDD/Fs)的浓度水平和区域分布特征.结果表明,5个采样点PM_(10)的质量浓度范围是140—264μg·m~(-3),日均值为184μg·m~(-3)比国家二级标准(150μg·m~(-3))高23%.所有采样点17种PCDD/Fs的总浓度范围1.96—4.80 pg·m~(-3),平均值3.69 pg·m~(-3),总毒性当量∑TEQ范围是148—353 fg I-TEQ·m~(-3),平均271 fg I-TEQ·m~(-3);PCDD/Fs污染水平最高出现在工业区,其次是市区,背景点最低.  相似文献   

6.
本研究通过分析采集自我国西部地区树皮样品中类二英多氯联苯(DL-PCBs)的含量及分布,研究了该区域环境中DL-PCBs的污染水平及来源,同时通过数学模型评估了该区域大气中DL-PCBs的水平.结果表明,我国西部地区树皮中DL-PCBs的浓度范围为nd—1.81 ng·g~(-1).PCB-118是含量最高的DL-PCBs同族体,约占总浓度的70%.主成分分析结果显示西部地区树皮中DL-PCBs主要来自于大气的远距离传输.同时,本研究利用POPs的树皮-大气分配模型对我国西部地区大气中的DL-PCBs进行了估算,大气中的DL-PCBs的水平范围为0—0.79 pg·m~(-3).与国内外的研究相比较,我国西部地区大气中DL-PCBs的浓度处于较低水平.  相似文献   

7.
城市是全(多)氟烷基化合物(Per-and polyfluoroalkyl substances,PFASs)典型的来源地区,本研究利用大流量主动采样器对天津市3个典型位点的大气分别在冬夏两季进行了短期连续监测.发现PFASs的挥发性前体物氟调聚醇(Fluorotelomer alcohols,FTOHs)在天津地区的市中心、乡村和污水处理厂位点的大气中均普遍检出,其总浓度(气态+颗粒态)在冬、夏两季分别达到25.6—95.3 pg·m~(-3)和16.7—2003 pg·m~(-3),中位值分别为71.6 pg·m~(-3)和50.6 pg·m~(-3),其中最高浓度出现在市中心位点;而对于全氟辛烷磺酰胺类化合物(Perfluorooctane sulfonamide derivatives,PFOSAs),除在两个样品中有N-乙基全氟辛烷磺酰胺超过100 pg·m~(-3),在大部分样品中均未检出PFOSAs或显著低于FTOHs的浓度.本研究发现,FTOHs在冬、夏季间发生了显著的相间转化,在夏季FTOHs主要存在于气相,因而可能具有较高的长距离迁移潜力;而在冬季颗粒态FTOHs所占比重显著增加,因而其大气迁移和转化能力可能更多地受到大气颗粒物的影响.在大气总悬浮颗粒物浓度较高的天津地区,颗粒态FTOHs的贡献不可忽视.  相似文献   

8.
以北京市西三环地区北京工商大学作为采样点,在2017年3—5月共采集气相、颗粒相(PM_(2.5)、PM_(10)、TSP)样品54个,对样品中28种PCBs单体进行定性定量分析,研究大气中多氯联苯(PCBs)的污染特征、在不同粒径颗粒物(PM_(2.5)、PM_(10)、TSP)中的分布规律和气粒分配行为.结果表明,北京市西三环地区大气中PCBs总浓度为144—859 pg·m~(-3),在国内外处于中等水平.其中,气相样品中PCBs浓度为131—814 pg·m~(-3),平均浓度为495 pg·m~(-3),占大气中PCBs总浓度的94.95%;颗粒相样品中PCBs浓度为12.3—48.9 pg·m~(-3),平均浓度为26.3 pg·m~(-3),占大气中PCBs总浓度的5.05%.低氯代PCBs更多地分布在气相上,高氯代PCBs更多地分布在颗粒相上.对不同粒径颗粒物(≤2.5μm、2.5—10μm、10μm)中PCBs的分析表明,PCBs主要分布在≤2.5μm的颗粒物中.不同粒径颗粒物中所含PCBs同系物的组成比例接近,以三氯至七氯为主,占颗粒物中PCBs总含量的88%以上.用过冷饱和蒸气压P0L(Pa)和分配系数Kp来描述PCBs的气粒分配行为,lg Kp-lg P0L的斜率为-0.3653,说明北京西三环地区大气中PCBs的气粒分配未达到平衡状态,在气粒分配过程中以吸收机制为主.  相似文献   

9.
研究了紫外光作用下六六六(α-HCH)在水、冰和雪3种介质中的光化学反应,考察了α-HCH的光化学反应动力学、产物和机理.结果表明,在水、冰和雪中,α-HCH均可以发生光化学反应,且反应均符合一级动力学方程.光化学反应速率大小顺序为雪>水>冰.在水和冰中,α-HCH均生成了异构化产物β-HCH和γ-HCH,异构化机理是α-HCH分子中的氯原子改变原来的构像;由于雪中α-HCH的光化学反应较快,因此在雪中未检测到异构化产物.在3种介质中,α-HCH的光解产物均为二氯苯和五氯环己烯,其机理为氯化氢或氯原子的脱除反应.  相似文献   

10.
为了解北京市大气细颗粒物(PM_(2.5))中二■英(PCDD/Fs)的污染特征,利用中流量大气颗粒物采样器,在北京市3个功能区5个采样点(两个市区点、两个工业区点和一个背景点),同步连续采集了大气细颗粒物PM_(2.5)样品.参照US EPA 1613B标准方法,应用高分辨率气相色谱/高分辨率质谱(HRGC/HRMS),分析了PM_(2.5)中17种PCDD/Fs的浓度水平和区域分布特征,并对PCDD/Fs的污染来源做了初步探讨.结果表明,5个采样点PM_(2.5)的日均质量浓度范围102—146μg·m~(-3),平均日均值119μg·m~(-3),超出国家二级标准(75μg·m~(-3))59%,污染较重.在空间分布上,PM_(2.5)的日均浓度表现为工业区大于背景点大于市区的特征.所有采样点17种PCDD/Fs的总浓度范围∑PCDD/Fs是1.60—4.09 pg·m~(-3),平均值3.23 pg·m~(-3),PCDD/Fs总毒性当量∑TEQ范围是140.54—275.69 fg I-TEQ·m~(-3),平均值233.18 fg I-TEQ·m~(-3).与国内外其他城市相比,北京市大气PM_(2.5)中PCDD/Fs污染处于相当或略高水平.OCDD、OCDF和1,2,3,4,7,8-HpCDF是PCDD/Fs的主要组成成分,分别占总浓度∑PCDD/Fs的10%、19%和24%.对于总毒性当量∑TEQ贡献最大的是2,3,4,7,8-PeCDF,占总毒性当量的48.3%,∑PCDDs/∑PCDFs比值范围为0.19—0.23,平均值0.22,属于典型的"热源"特征.在浓度变化上, PCDDs呈现为随氯取代个数的增加而增加,除OCDF外, PCDFs的各单体浓度也随着取代氯原子个数的增加而增大.在区域分布上,PCDD/Fs浓度表现为工业区高于市区,市区大于背景点,充分体现了局地源的特点.采样期间工业热过程(化石燃料燃烧、电弧炉、烧结和冶炼等)、机动车排放和固体垃圾焚烧是北京冬季大气PM_(2.5)中PCDD/Fs和PM_(2.5)污染水平的主要影响因素.  相似文献   

11.
孙俊玲  王鹏焱  张庆华 《环境化学》2019,38(7):1582-1589
为探讨不同交通状况下大气颗粒物中二■英(PCDD/Fs)的污染特征以及评估交通限行对大气颗粒物中二■英(PCDD/Fs)变化趋势的影响,在中国地质大学(北京)东门使用中流量采样器对大气颗粒物PM_(10)和TSP样品进行了连续同步采集,应用同位素稀释高分辨率气相色谱/高分辨率质谱(HRGC/HRMS)联用法和US EPA 1613B标准方法,检测分析了北京市交通限行期间以及交通限行前后等不同交通状况下大气颗粒物TSP和PM_(10)中17种2,3,7,8-氯取代PCDD/Fs浓度及其变化特征,结果显示,PCDD/Fs在TSP中的浓度和毒性当量(TEQ)分别是交通限行前2117 fg·m~(-3)(120.85 fg I-TEQ·m~(-3))、限行期间550 fg·m~(-3)(25.26 fg I-TEQ·m~(-3)),在PM_(10)中的浓度(毒性当量)分别是交通限行前2045 fg·m~(-3)(112.87 fg I-TEQ·m~(-3))、限行期间484 fg·m~(-3)(19.67 fg I-TEQ·m~(-3))、限行结束后1572 fg·m~(-3)(81.06 fg I-TEQ·m~(-3)). PCDDs浓度远低于PCDFs,体现了典型"热源"特征,除OCDF外,PCDDs和PCDF同族体浓度变化趋势表现为随着取代氯原子个数的增加而增大,PCDD/Fs主要附着在PM_(10)中,占TSP中总浓度的87%—97%,平均92%.交通限行期间PCDD/Fs污染水平明显降低,临时交通流控制措施是PCDD/Fs降低的主要因素.当前的研究结果力求为评价交通源对大气环境中PCDD/Fs的影响以及交通限行对PCDD/Fs的削减贡献提供支撑.  相似文献   

12.
对上海市城区和郊区采集的64个总悬浮颗粒物(TSP)样品进行GC/MS分析,结果表明:全年PAHs浓度范围为2.25-221.6ng·m~(-3),并呈现明显的秋、冬季节高而夏季低的变化特征,且PAHs年平均值郊区稍微高于城区.多环芳烃中苯并(b k)荧蒽、茚并(1,2,3-cd)芘、晕苯等化合物相对含量较高,四环以上的组分全年平均含量在90%以上.采用苯并(a)芘和苯并(a)芘等效质量浓度(BaPE)对上海市大气颗粒物中的PAHs进行致癌风险评价,BaP年均值在城区和郊区分别为2.57ng·m~(-3)和2.86ng·m~(-3),秋季BaP年均值超过了居民区标准限值(5.0ng·m~(-3)).BaPE在城区和郊区的年均浓度分别为5.82ng·m~(-3)和7.24ng·m~(-3),秋季污染最为严重.  相似文献   

13.
研究太原市城区大气颗粒物质量浓度时空变化规律,可以为实施更有效的大气污染综合治理手段提供科学依据。以太原市9个国家空气质量自动监测站的数据为基础,运用统计分析和Kriging插值法,对太原市城区2019年大气颗粒物的时空分布进行了分析。结果表明,2019年太原市城区PM_(2.5)和PM_(10)年均质量浓度分别为56μg·m~(-3)和107μg·m~(-3),是国家二级标准限值的1.60、1.53倍,以PM_(2.5)和PM_(10)为首要污染物占总超标天数的44.03%和12.58%;PM_(2.5)/PM_(10)年均值为0.52,PM_(2.5)对PM_(10)贡献较大;PM_(2.5)季平均质量浓度为冬季(87μg·m~(-3))秋季(50μg·m~(-3))春季(49μg·m~(-3))夏季(34μg·m~(-3)),PM_(10)为冬季(123μg·m~(-3))春季(120μg·m~(-3))秋季(98μg·m~(-3))夏季(64μg·m~(-3));PM_(2.5)和PM_(10)质量浓度月变化呈U型,二者平均质量浓度1月最高,8月最低;PM_(2.5)和PM_(10)24h质量浓度变化呈"单峰单谷"型,峰值在10:00,谷值在17:00;取暖期PM_(2.5)与CO、SO2和NO_2相关性高于其他时段;太原市城区PM_(2.5)和PM_(10)质量浓度空间分布总体上呈北低南高之势,PM_(2.5)春夏秋季的空间分布格局与太原市城区生产、生活、交通干道分布格局比较吻合。以上结果提示秋冬季是太原市城区颗粒物治理的关键时期,位于南部的小店和晋源区为重点防控治理区域。  相似文献   

14.
中国七大水系淡水沉积物中林丹(γ-HCH)的生态风险评估   总被引:5,自引:1,他引:4  
林丹(γ-HCH)作为曾广泛应用的有机氯农药,自2000年在中国停止生产以来,全国范围内环境介质中仍广泛检出,对生物体及自然环境存在潜在危害。在收集γ-HCH的沉积物毒性数据基础上,通过物种敏感度分布(Species Sensitivity Distributions,SSD)曲线拟合的方法获得其沉积物质量基准。选取7种常用模型进行拟合,通过比较,最终采用S-Logistic模型拟合γ-HCH急性毒性曲线,得到急性基准值CMCsed=0.00530μg·g~(-1);采用S-Gompertz模型拟合γ-HCH慢性毒性曲线,得到慢性基准值CCCsed=0.00106μg·g~(-1)。我国七大水系68.2%的水体沉积物中γ-HCH的残留浓度均低于其CCCsed,说明其风险较低。但是,在海河和辽河流域某些点位的残留超标,需要引起足够的重视。所获得的沉积物基准值对评估沉积物中γ-HCH的生态风险和环境修复具有重要指导意义。  相似文献   

15.
2012年8月于云南省采集了16个树皮样品,分析了其中多环芳烃和有机氯农药(包括六六六和滴滴涕)的浓度水平和分布特征.树皮中∑_(16)PAH的浓度范围为317—1194 ng·g~(-1),平均值为639 ng·g~~(-1);研究区域树皮中∑_4HCH和∑_6DDT的浓度分别为为0.10—3.86 ng·g~(-1)干重(平均值为1.10 ng·g~(-1)干重)和0.78—7.29 ng·g~(-1)干重(平均值为3.32 ng·g~(-1)干重),PAHs浓度是藏东南林芝地区的2—3倍,而有机氯农药的浓度低于藏东南林芝地区.树皮中脂肪可影响研究区域持久性有机污染物(Persistent organic pollutants,POPs)的分布,但影响不显著.同时HCHs、DDTs和2环及3环PAHs的浓度随海拔的升高而增加,呈典型的高山冷捕获效应;4环、5环和6环PAHs的浓度随着海拔的升高而降低,这可能是云南本地污染源影响所致.较低质量的PAHs(2—3环)是研究区域PAHs的重要组成部分,平均占总浓度的77%以上,说明研究区域受到污染物大气远距离传输的重要影响.PAHs特征单体比值表明,草、木材等生物质和煤炭燃料等的低温燃烧是研究区域PAHs的主要来源,同时较低的α/γ-HCH和较高的o,p'-DDT/p,p'-DDT比率表明,林丹和三氯杀螨醇的使用对研究区域树皮中有机氯农药的污染有一定的贡献.根据反向气团轨迹模型及PAHs和OCPs的浓度分布,推断研究区域的OCPs主要受印度季风和西风环流的影响,而PAHs是大气远距离传输源和云南本地污染源共同作用的结果.  相似文献   

16.
北京市大气中多氯联苯的污染水平和分布特征   总被引:1,自引:0,他引:1  
利用XAD树脂被动采样技术和同位素稀释高分辨气相色谱/高分辨质谱联用法(HRGC/HRMS)研究了2012年11月至2014年1月北京地区大气中多氯联苯(PCBs)的污染现状、区域分布特征及季节性变化规律.结果表明,北京大气中19种PCBs总浓度为8.42—45.2 pg·m-3(平均值23.1 pg·m-3),各采样点全年平均毒性当量范围为0.33—3.33 fg WHO-TEQ m-3(平均值1.85 fg WHO-TEQ m-3).PCB-11浓度范围为27.9—136pg·m-3,平均值为78.2 pg·m-3.大气中的PCBs以低氯代(2—5氯代)PCBs为主.季节变化规律呈现出夏/秋季节PCBs浓度高于冬/春季节的规律;区域分布特征呈现出人口密集的城区大于背景区、工业区大于城区的规律.  相似文献   

17.
随着城市化进程的加快,生态环境恶化,改善空气质量已成为社会所关注的重要环境问题。不同的植被结构可以有效调控大气颗粒物浓度,提高负离子的浓度,是改善空气质量的重要组成部分。为探究不同植被结构对空气质量的调控能力以及影响空气质量的因素,以沈阳市东陵公园为研究对象,采用定点观测法,监测8块不同植被结构内大气颗粒物(PM_(2.5)、PM_(10))和空气负离子浓度,并同步观测气象因子。研究结果表明,(1)不同植被结构调控大气颗粒物的能力存在差异,但是不显著。PM_(2.5)和PM_(10)日平均质量浓度在S1(稠李Padus avium+萱草Hemerocallis fulva)均为最高,分别是(48.63±18.05)μg·m~(-3)和(68.55±20.64)μg·m~(-3);S3(云杉Picea asperata+榆叶梅Amygdalus triloba+牛筋草Eleusine indica)最低,分别是(28.95±8.91)μg·m~(-3)和(45.21±10.38)μg·m~(-3)。PM_(2.5)和PM_(10)日平均质量浓度变化范围分别为(28.95—48.63)μg·m~(-3)和(45.21—68.55)μg·m~(-3)。(2)不同植被结构内空气负离子浓度存在显著性差异。空气负离子日平均浓度在S7(油松Pinus tabuliformis+桃叶卫矛Euonymus bungeanus+玉簪Hosta plantaginea)最高,为(1 007.50±53.10)ion·cm~(-3);S1(稠李+萱草)最低,为(446.21±34.9) ion·cm~(-3)。空气负离子日平均浓度范围(446.21—1 007.50) ion·cm~(-3)。(3)大气颗粒物(PM_(2.5)、PM_(10))和空气负离子浓度与乔木层郁闭度和相对湿度呈正显著相关,而与温度呈负显著相关;大气颗粒物浓度与空气负离子浓度呈负显著相关。以上研究结果可为优化城市绿地植被结构和改善空气质量提供一定的借鉴。  相似文献   

18.
赤潮多发区深圳湾叶绿素a的时空分布及其影响因素   总被引:6,自引:0,他引:6  
于2008年2月至2008年11月分四个季度调查了赤潮多发区深圳湾叶绿素a的时空分布,并分析了叶绿素a与主要环境因子之间的关系.结果表明,深圳湾叶绿素a质量浓度范围为3.07~309.94 mg·m~(-3),年平均值为42.29 mg·m~(-3).四季叶绿素a平均质量浓度由高到低排列分别为:春季(108.33 mg·m~(-3))>夏季(35.2 mg·m~(-3))>秋季(16.68 mg·m~(-3))>冬季(8.96 mg·m~(-3)).叶绿素a的质量浓度在冬季和春季呈现由湾内向湾外递减的分布特征,而夏季和秋季呈现由西岸向东岸递减的分布特征,整体则呈现由湾内向湾外递减的分布特征.相关分析显示深圳湾叶绿素a与水温、COD、TOC、PO_4~(3-)-P和浮游植物密度因子显著正相关,与DIN因子极显著正相关,说明叶绿素a与水温、DIN、PO_4~(3-)-P、COD、TOC和浮游植物密度之间有着比其它因子更为密切的关系.以叶绿素a作为富营养化评价标准,发现深圳湾海域富营养化严重,存在随时爆发赤潮的潜在风险.  相似文献   

19.
为研究华北平原夏季PM2.5中有机气溶胶污染特征,于2015年6月20日至2015年7月30日对山东禹城生态站大气中PM_(2.5)进行了观测研究.结果表明,观测期间禹城大气PM_(2.5)日平均浓度为87.15±32.27μg·m~(-3),与我国《环境空气质量标准》(GB3095-2012)二级标准75μg·m~(-3)相比,超标率为58.53%.检测到的10种糖醇的平均总浓度为177.89±145.38 ng·m~(-3)(白天)和226.97±196.88 ng·m~(-3)(晚上),分别占WSOC的3.18%(白天)和4.97%(晚上).脱水糖(左旋葡聚糖、半乳聚糖和甘露聚糖)是检测到的糖类化合物中的主要组成部分,分别占总浓度的58.52%(白天)和75.61%(晚上).EC、OC、WSOC的平均质量浓度分别为2.68±2.8μg·m~(-3),7.51±4.4μg·m~(-3)、5.57±3.95μg·m~(-3),分别占PM_(2.5)质量浓度的3.08%、8.62%和7.34%.WSOC占OC的74.16%,表明有机碳中大部分是水溶性组分.利用EC示踪法和WSOC法估算的二次有机碳(SOC)的质量浓度分别为4.08±2.25μg·m~(-3)和4.90±3.11μg·m~(-3),且两种方法计算的SOC呈现很好的相关性(r=0.77,P0.001).估算得到的SOC为白天高于夜间,与白天光化学反应比较强烈、产生的二次有机物较多一致.相关性分析表明,OC、WSOC和SOC与相对湿度呈现显著的负相关,与SO_2表现出较强的正相关关系,与温度均没有表现出相关性.  相似文献   

20.
以北京西山森林公园为林内观测点,北京海淀植物园为林外对照点,研究城市森林PM_(2.5)质量浓度变化特征,并对其影响因素进行分析。结果表明,林内外PM_(2.5)质量浓度日变化呈"双峰双谷"型,8:00和21:00左右是一天中的两个峰值,15:00和4:00左右是一天中的两个谷值,PM_(2.5)质量浓度林内(104.02μg·m~(-3))林外(82.52μg·m~(-3))。一年中PM_(2.5)质量浓度在冬季最高,春季次之,夏季最低,PM_(2.5)质量浓度年变化林内为冬季(115.46μg·m~(-3))春季(112.39μg·m~(-3))秋季(106.37μg·m~(-3))夏季(81.87μg·m~(-3)),林外为冬季(97.35μg·m~(-3))春季(94.07μg·m-3)秋季(93.17μg·m~(-3))夏季(61.86μg·m~(-3))。气温、降雨均与PM_(2.5)浓度呈负相关。晴天时,温度高、空气对流旺盛,PM_(2.5)浓度较低;降水对PM_(2.5)有很好的消减作用;风有驱散PM_(2.5)的作用。在高温高湿天气下,PM_(2.5)浓度高于其他天气情况。该研究可以丰富森林净化大气的理论,为环保部门相关政策的制定提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号