首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用90-nm InAlAs/InGaAs/InP HEMT工艺设计实现了两款D波段(110~170 GHz)单片微波集成电路放大器。两款放大器均采用共源结构,布线选取微带线。基于器件A设计的三级放大器A在片测试结果表明:最大小信号增益为11.2 dB@140 GHz,3 dB带宽为16 GHz,芯片面积2.6×1.2 mm2。基于器件B设计的两级放大器B在片测试结果表明:最大小信号增益为15.8 dB@139 GHz,3dB带宽12 GHz,在130~150 GHz频带范围内增益大于10 dB,芯片面积1.7×0.8 mm2,带内最小噪声为4.4 dB、相关增益15 dB@141 GHz,平均噪声系数约为5.2 dB。放大器B具有高的单级增益、相对高的增益面积比以及较好的噪声系数。该放大器芯片的设计实现对于构建D波段接收前端具有借鉴意义。  相似文献   

2.
Quarter-micron-gate-length high-electron-mobility transistors (HEMTs) have exhibited state-of-the-art low-noise performance at millimeter-wave frequencies, with minimum noise figures of 1.2 dB and 32 GHz and 1.8 dB at 60 GHz. At Ka-band, two-stage and three-stage HEMT low-noise amplifiers have demonstrated noise figures of 1.7 and 1.9 dB, respectively, with associated gains of 17.0 and 24.0 dB at 32 GHz. At V-band, two stage and three-stage HEMT amplifiers yielded noise figures of 3.2 and 3.6 dB, respectively, with associated gains of 12.7 and 20.0 dB and 60 GHz. The 1-dB-gain compression point of all the amplifiers is greater than +6 dBm. The results clearly show the potential of short-gate-length HEMTs for high-performance millimeter-wave receiver application  相似文献   

3.
The authors discuss the development of 110-120-GHz monolithic low-noise amplifiers (LNAs) using 0.1-mm pseudomorphic AlGaAs/InGaAs/GaAs low-noise HEMT technology. Two 2-stage LNAs have been designed, fabricated, and tested. The first amplifier demonstrates a gain of 12 dB at 112 to 115 GHz with a noise figure of 6.3 dB when biased for high gain, and a noise figure of 5.5 dB is achieved with an associated gain of 10 dB at 113 GHz when biased for low-noise figure. The other amplifier has a measured small-signal gain of 19.6 dB at 110 GHz with a noise figure of 3.9 dB. A noise figure of 3.4 dB with 15.6-dB associated gain was obtained at 113 GHz. The authors state that the small-signal gain and noise figure performance for the second LNA are the best results ever achieved for a two-stage HEMT amplifier at this frequency band  相似文献   

4.
High-performance W-band monolithic one- and two-stage low noise amplifiers (LNAs) based on pseudomorphic InGaAs-GaAs HEMT devices have been developed. The one-stage amplifier has a measured noise figure of 5.1 dB with an associated gain of 7 dB from 92 to 95 GHz, and the two-stage amplifier has a measured small signal gain of 13.3 dB at 94 GHz and 17 dB at 89 GHz with a noise figure of 5.5 dB from 91 to 95 GHz. An eight-stage LNA built by cascading four of these monolithic two-stage LNA chips demonstrates 49 dB gain and 6.5 dB noise figure at 94 GHz. A rigorous analysis procedure was incorporated in the design, including accurate active device modeling and full-wave EM analysis of passive structures. The first pass success of these LNA chip designs indicates the importance of a rigorous design/analysis methodology in millimeter-wave monolithic IC development  相似文献   

5.
A two-stage 8–12 GHz (X-band) cryogenically-cooled Low-Noise Amplifier (LNA) has been developed with a commercial pseudomorphic HEMT on AsGa substrate. In a first step, different commercial transistors have been fully characterized from 300 K to 20 K using a new method to measure the four noise parameters. Preliminary results have allowed the selection of the best device. This enabled the design of the two-stage LNA with the help of a microwave CAD software. In a second step, the LNA has been characterized at 300 K, 30 K and 4 K. As the physical temperature decreased from 300 K to 30 K, the LNA exhibited an average gain increase of 2 dB and as much as a fourfold reduction of noise temperature. A noise figure of 22.5 K and a gain of 23 dB have been achieved at 30 K around 10 GHz. The noise temperature has been furthermore reduced to 20 K by cooling the amplifier at the liquid helium temperature (4.2 K). Different methods to measure the noise characteristics of the amplifier are widely developed in this paper.  相似文献   

6.
高电子迁移率晶体管(HEMT)的小信号等效电路低温模型是研制致冷低噪声放大器(LNA)与研究晶 体管微波特性的基础。该文通过测量HEMT 器件在低温环境下直流参数与散射参数(S 参数),构建了包含噪声参 量的小信号等效电路,并据此设计了一款覆盖L 波段的宽带低温低噪声放大器(LNA),工作频率1 ~2GHz,相对带宽 达到66. 7%。在常温下放大器功率增益大于28dB,噪声温度小于39K;当环境温度制冷至11K 时,噪声温度为1. 9 ~3. 1K,输入输出端口的回波损耗S11 和S22 均优于-10dB,1dB 压缩点输出功率为9. 2dBm,功耗仅为54mW。  相似文献   

7.
本文从低噪声FET放大器的实际设计出发,分析了输入匹配电路对噪声性能的影响.从放大器的实际结构讨论了影响放大器噪声性能的因素.使用南京固体器件研究所研制的WC61GaAs MESFET,在3.7~4.2GHz下,得到的结果为:两级放大器增益28dB,三级放大器增益40dB,带内噪声温度小于80K,最小噪声温度为77K.  相似文献   

8.
This paper reports on state of-the-art HEMT devices and circuit results utilizing 32% and 60% indium content InGaAs channel metamorphic technology on GaAs substrates. The 60% In metamorphic HEMT (MHEMT) has achieved an excellent 0.61-dB minimum noise figure with 11.8 dB of associated gain at 26 GHz. Using this MHEMT technology, two and three-stage Ka-band low-noise amplifiers (LNAs) have demonstrated <1.4-dB noise figure with 16 dB of gain and <1.7 with 26 dB of gain, respectively. The 32% In MHEMT device has overcome the <3.5-V drain bias limitation of other MHEMT power devices, showing a power density of 650 mW/mm at 35 GHz, with Vds=6 V  相似文献   

9.
The design, fabrication, and evaluation of a W-band image-rejection downconverter based on pseudomorphic InGaAs-GaAs HEMT technology are presented. The image-rejection downconverter consists of a monolithic three-stage low-noise amplifier, a monolithic image-rejection mixer, and a hybrid IF 90° coupler with an IF amplifier. The three-stage amplifier has a measured noise figure of 3.5 dB, with an associated small signal gain of 21 dB at 94 GHz while the image-rejection mixer has a measured conversion loss of 11 dB with +10 dBm LO drive at 94.15 GHz. Measured results of the complete image-rejection downconverter including the hybrid IF 90° coupler and a 10 dB gain amplifier show a conversion gain of more than 18 dB and a noise figure of 4.6 dB at 94.45 GHz  相似文献   

10.
Low-noise HEMT AlGaAs/GaAs heterostructure devices have been developed using metal organic chemical vapor deposition (MOCVD). The HEMT's with 0.5-µm-long and 200-µm-wide gates have shown a minimum noise figure of 0.83 dB with an associated gain of 12.5 dB at 12 GHz at room temperature. Measurements have confirmed calculations on the effect of the number of gate bonding pads On the noise figure for different gate Widths. Substantial noise figure improvement was observed Under low-temperature operation, especially compared to conventional GaAs MESFET's. A two-stage amplifier designed for DBS reception using the HEMT in the first stage has displayed a noise figure under 2.0 dB from 11.7 to 12.2 GHz.  相似文献   

11.
We report on a 1-6 GHz HEMT-HBT three-stage variable gain amplifier (VGA), which is realized using selective molecular beam epitaxy (MBE). The VGA integrates an HEMT low noise amplifier with an HBT analog current-steer variable gain cell and output driver stage to achieve a combination of low noise figure, wide gain control, and high linearity. The HEMT-HBT VGA MMIC obtains a maximum gain of 21 dB with a gain control range >30 dB, a minimum noise figure of 4.3 dB, and an input IP3 (IIP3) greater than -4 dBm over 25 dB of gain central range. By integrating an HEMT instead of on HBT preamplifier stage, the VGA noise figure is improved by as much as 2 dB compared to an all-HBT single-technology design. The HEMT-HBT MMIC demonstrates the functional utility and RF performance advantage of monolithically integrating both HEMT and HBT devices on a single substrate  相似文献   

12.
During recent years significant progress has been made in GaAs technology and the GaAs Schottky-barrier field-effect transistor now shows outstanding microwave gain and noise properties. Two experimental microwave amplifiers demonstrate that the device is very well suited for broad-band applications and that large bandwidth in the X- and Ku-band can be obtained with simple circuits. The first of the two three-stage amplifiers realized was optimized with respect to noise and a noise figure of 3.8 dB was obtained at 8 GHz; the maximum gain is 17.5 dB at 8.3 GHz and the 3-dB bandwidth is 1.3 GHz. The second amplifier has a maximum gain of 11.5 dB at 11.5 GHz. The gain is greater than 8.5 dB in the range 9.5-14.3 GHz.  相似文献   

13.
The noise- and s-parameters of a GaAs MESFET with 1-mu m gate Iength are characterized versus temperature. At room temperature, the noise figure measured at 12 GHz is 3.5 dB. At 90 K, the noise figure decreases to 0.8 dB (T/sub e/ = 60 K). The associated gain is 8 dB. The design of a cooled amplifier for the 11.7-12.2-GHz communication band is discussed. At 60 K, the three-stage amplifier exhibits 1.6-dB noise figure (T/sub e/ = 130 K) and 31-dB gain.  相似文献   

14.
Vowinkel  B. 《Electronics letters》1980,16(19):730-731
A cryogenic single-stage broadband f.e.t. amplifier with an average noise temperature of 34 K (0.5 dB) over a bandwidth of 2 GHz has been developed. The average gain is 12 dB. The best spot noise temperature is 17 K (0.25 dB) at 3.2 GHz, which is competitive with cryogenic parametric amplifiers.  相似文献   

15.
A wideband low-noise pseudomorphic HEMT MMIC variable-gain amplifier has been designed and fabricated. The amplifier has a nominal gain of 13 dB across the band 2-20 GHz, with gain flatness better than ±0.4 dB. The noise figure is less than 3 dB across the band 6-16 GHz. An on-chip temperature-sensing diode is used to provide a linear temperature correction which has been used to reduce the gain variation of the amplifier by a factor of 2 across the temperature range -50°C to +95°C  相似文献   

16.
超低噪声K波段放大器仿真设计   总被引:1,自引:0,他引:1  
介绍了一种超低噪声K波段放大器的设计方法,以高电子迁移率晶体管为基础,采用3级放大拓扑结构,提出了一种改进型的负反馈网络,较好地改善了电路的增益平坦度。利用Agilent公司的微波电路CAD(计算机辅助设计)软件ADS2006对电路原理图及版图进行了仿真设计,最终实现了在工作频段19.5GHz~21.5GHz内,噪声系数小于1.5dB、增益大于30dB的优异电性能。  相似文献   

17.
This paper describes a high-performance indium-phosphide monolithic microwave integrated circuit (MMIC) amplifier, which has been developed for cooled application in ultra-low-noise imaging-array receivers. At 300 K, the four-stage amplifier exhibits more than 15-dB gain and better than 10-dB input and output return loss from 80 to 110 GHz. The room-temperature noise figure is typically 3.2 dB, measured between 90-98 GHz. When cooled to 15 K, the gain increases to more than 18 dB and the noise figure decreases to 0.5 dB. Only one design pass was required to obtain very good agreement between the predicted and measured characteristics of the circuit. The overall amplifier performance is comparable to the best ever reported for MMIC amplifiers in this frequency band  相似文献   

18.
The design, fabrication, and evaluation of a fully integrated W-band monolithic downconverter based on InGaAs pseudomorphic HEMT technology are presented. The monolithic downconverter consists of a two-stage low-noise amplifier and a single-balanced mixer. The single-balanced mixer has been designed using the HEMT gate Schottky diodes inherent to the process. Measured results of the complete downconverter show conversion gain of 5.5 dB and a double-sideband noise figure of 6.7 dB at 94 GHz. Also presented is the downconverter performance characterized over the -35°C to +65°C temperature range. The downconverter design was a first pass success and has a high circuit yield  相似文献   

19.
Design and Analysis of Broadband Dual-Gate Balanced Low-Noise Amplifiers   总被引:2,自引:0,他引:2  
In this paper, we present three MMIC low-noise amplifiers using dual-gate GaAs HEMT devices in a balanced amplifier configuration. The designs target three different frequency bands including 4-9 GHz, 9-20 GHz, and 20-40 GHz. These dual-gate balanced designs demonstrate the excellent qualities of balanced amplifiers in terms of stability and matched characteristics, while demonstrating higher bandwidth than designs with a single-stage common-source device. Additionally, noise performance is excellent, with the 4-9 GHz LNA demonstrating <1.75 dB noise figure (NF), the 9-20 GHz LNA <2.75 dB NF and the 20-40 GHz LNA <2.5 dB NF. Demonstrating high gain and excellent bandwidth, the dual-gate devices seem a logical choice for the balanced amplifier topology.  相似文献   

20.
This work benchmarks the first demonstration of a multistage monolithic HEMT IC design which incorporates a DC temperature compensated current-mirror bias scheme. This is believed to be the first demonstrated monolithic HEMT bias scheme of its kind. The active bias approach has been applied to a 2-18 GHz five-section low noise HEMT distributed amplifier which achieves a nominal gain of 12.5 dB and a noise figure <2.5 dB across a 2-18 GHz band, The regulated current-mirror scheme achieves better than 0.2% current regulation over a 0-125°C temperature range, The RF gain response was also measured over the same temperature range and showed less than 0.75 dB gain degradation. This results in a -0.006 dB/°C temperature coefficient which is strictly due to HEMT device Gm variation with temperature. The regulated current-mirror circuit can be employed as a stand-alone Vgs-voltage reference circuit which fan be monolithically applied to the gate bias terminal of existing HEMT ICs for providing temperature compensated performance, This monolithic bias approach provides a practical solution to DC bias regulation and temperature compensation for HEMT MMICs which can improve the performance, reliability, and cost of integrated microwave assemblies (IMAs) used in space-flight military applications  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号