首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
Cao JJ  Lee SC  Chow JC  Cheng Y  Ho KF  Fung K  Liu SX  Watson JG 《Indoor air》2005,15(3):197-204
Six residences were selected (two roadside, two urban, and two rural) to evaluate the indoor-outdoor characteristics of PM(2.5) (aerodynamic diameter <2.5 microm) carbonaceous species in Hong Kong during March and April 2004. Twenty-minute-averaged indoor and outdoor PM(2.5) concentrations were recorded by DustTrak samplers simultaneously at each site for 3 days to examine diurnal variability of PM(2.5) mass concentrations and their indoor-to-outdoor (I/O) ratios. Daily (24-h average) indoor/outdoor PM(2.5) samples were collected on pre-fired quartz-fiber filters with battery-powered portable mini-volume samplers and analyzed for organic and elemental carbon (OC, EC) by thermal/optical reflectance (TOR) following the Interagency Monitoring of Protected Visual Environments (IMPROVE) protocol. The average indoor and outdoor concentrations of 24 h PM(2.5) were 56.7 and 43.8 microg/m(3), respectively. The short-term PM(2.5) profiles indicated that the penetration of outdoor particles was an important contributor to indoor PM(2.5), and a household survey indicated that daily activities were also sources of episodic peaks in indoor PM(2.5). The average indoor OC and EC concentrations of 17.1 and 2.8 microg/m(3), respectively, accounted for an average of 29.5 and 5.2%, respectively, of indoor PM(2.5) mass. The average indoor OC/EC ratios were 5.8, 9.1, and 5.0 in roadside, urban, and rural areas, respectively; while average outdoor OC/EC ratios were 4.0, 4.3, and 4.0, respectively. The average I/O ratios of 24 h PM(2.5), OC, and EC were 1.4, 1.8, and 1.2, respectively. High indoor-outdoor correlations (r(2)) were found for PM(2.5) EC (0.96) and mass (0.81), and low correlations were found for OC (0.55), indicative of different organic carbon sources indoors. A simple model implied that about two-thirds of carbonaceous particles in indoor air are originated from outdoor sources. PRACTICAL IMPLICATIONS: Indoor particulate pollution has received more attentions in Asia. This study presents a case study regarding the fine particulate matter and its carbonaceous compositions at six residential homes in Hong Kong. The characteristics and relationship of atmospheric organic and elemental carbon were discussed indoors and outdoors. The distribution of eight carbon fractions was first reported in indoor samples to interpret potential sources of indoor carbonaceous particles. The data set can provide significant scientific basis for indoor air quality and epidemiology study in Hong Kong and China.  相似文献   

2.
Outdoor particulate matter (PM(10)) is associated with detrimental health effects. However, individual PM(10) exposure occurs mostly indoors. We therefore compared the toxic effects of classroom, outdoor, and residential PM(10). Indoor and outdoor PM(10) was collected from six schools in Munich during teaching hours and in six homes. Particles were analyzed by scanning electron microscopy and X-ray spectroscopy (EDX). Toxicity was evaluated in human primary keratinocytes, lung epithelial cells and after metabolic activation by several human cytochromes P450. We found that PM(10) concentrations during teaching hours were 5.6-times higher than outdoors (117 ± 48 μg/m(3) vs. 21 ± 15 μg/m(3), P < 0.001). Compared to outdoors, indoor PM contained more silicate (36% of particle number), organic (29%, probably originating from human skin), and Ca-carbonate particles (12%, probably originating from paper). Outdoor PM contained more Ca-sulfate particles (38%). Indoor PM at 6 μg/cm(2) (10 μg/ml) caused toxicity in keratinocytes and in cells expressing CYP2B6 and CYP3A4. Toxicity by CYP2B6 was abolished with the reactive oxygen species scavenger N-acetylcysteine. We concluded that outdoor PM(10) and indoor PM(10) from homes were devoid of toxicity. Indoor PM(10) was elevated, chemically different and toxicologically more active than outdoor PM(10). Whether the effects translate into a significant health risk needs to be determined. Until then, we suggest better ventilation as a sensible option. PRACTICAL IMPLICATIONS: Indoor air PM(10) on an equal weight base is toxicologically more active than outdoor PM(10). In addition, indoor PM(10) concentrations are about six times higher than outdoor air. Thus, ventilation of classrooms with outdoor air will improve air quality and is likely to provide a health benefit. It is also easier than cleaning PM(10) from indoor air, which has proven to be tedious.  相似文献   

3.
PM10 and PM2.5 samples were collected in the indoor environments of four hospitals and their adjacent outdoor environments in Guangzhou, China during the summertime. The concentrations of 18 target elements in particles were also quantified. The results showed that indoor PM2.5 levels with an average of 99 microg m(-3) were significantly higher than outdoor PM2.5 standard of 65 microg m(-3) recommended by USEPA [United States Environmental Protection Agency. Office of Air and Radiation, Office of Air Quality Planning and Standards, Fact Sheet. EPA's Revised Particulate Matter Standards, 17, July 1997] and PM2.5 constituted a large fraction of indoor respirable particles (PM10) by an average of 78% in four hospitals. High correlation between PM2.5 and PM10 (R(2) of 0.87 for indoors and 0.90 for outdoors) suggested that PM2.5 and PM10 came from similar particulate emission sources. The indoor particulate levels were correlated with the corresponding outdoors (R(2) of 0.78 for PM2.5 and 0.67 for PM10), demonstrating that outdoor infiltration could lead to direct transportation into indoors. In addition to outdoor infiltration, human activities and ventilation types could also influence indoor particulate levels in four hospitals. Total target elements accounted for 3.18-5.56% of PM2.5 and 4.38-9.20% of PM10 by mass, respectively. Na, Al, Ca, Fe, Mg, Mn and Ti were found in the coarse particles, while K, V, Cr, Ni, Cu, Zn, Cd, Sn, Pb, As and Se existed more in the fine particles. The average indoor concentrations of total elements were lower than those measured outdoors, suggesting that indoor elements originated mainly from outdoor emission sources. Enrichment factors (EF) for trace element were calculated to show that elements of anthropogenic origins (Zn, Pb, As, Se, V, Ni, Cu and Cd) were highly enriched with respect to crustal composition (Al, Fe, Ca, Ti and Mn). Factor analysis was used to identify possible pollution source-types, namely street dust, road traffic and combustion processes.  相似文献   

4.
An exposure study of children (aged 10-12 years) living in Santiago, Chile, was conducted. Personal, indoor and outdoor fine and inhalable particulate matter (< 2.5 .m in diameter, PM2.5 and < 10 microm in diameter, PM10, respectively), and nitrogen dioxide (NO2) were measured during pilot (N = 8) and main (N = 20) studies, which were conducted during the winters of 1998 and 1999, respectively. For the main study, personal, indoor and outdoor 24-h samples were collected for five consecutive days. Similar mean personal, indoor and outdoor PM2.5 concentrations (69.5, 68.5 and 68.1 microg/m3, respectively) were found. However, for coarse particles (calculated as the difference between measured PM10 and PM2.5, PM2.5-10), indoor and outdoor levels (35.4 and 47.4 microg/m3) were lower than their corresponding personal exposures (76.3 microg/m3). Indoor and outdoor NO2 concentrations were comparable (35.8 and 36.9 ppb) and higher than personal exposures (25.9 ppb). Very low ambient indoor and personal O3 levels were found, which were mostly below the method's limit of detection (LOD). Outdoor particles contributed significantly to indoor concentrations, with effective penetration efficiencies of 0.61 and 0.30 for PM2.5 and PM2.5-10, respectively. Personal exposures were strongly associated with indoor and outdoor concentrations for PM2.5, but weakly associated for PM2.5-10. For NO2, weak associations were obtained for indoor-outdoor and personal-outdoor relationships. This is probably a result of the presence of gas cooking stoves in all the homes. Median I/O, P/I and P/O ratios for PM2.5 were close to unity, and for NO2 they ranged between 0.64 and 0.95. These ratios were probably due to high ambient PM2.5 and NO2 levels in Santiago, which diminished the relative contribution of indoor sources and subjects' activities to indoor and personal PM2.5 and NO2 levels.  相似文献   

5.
We studied the effect of ventilation and air filtration systems on indoor air quality in a children's day-care center in Finland. Ambient air nitrogen oxides (NO, NO2) and particles (TSP, PM10) were simultaneously measured outdoors and indoors with automatic nitrogen oxide analyzers and dust monitoring. Without filtration nitrogen oxides and particulate matter generated by nearby motor traffic penetrated readily indoors. With chemical filtration 50-70% of nitrogen oxides could be removed. Mechanical ventilation and filtration also reduced indoor particle levels. During holidays and weekends when there was no opening of doors and windows and no particle-generating activity indoors, the indoor particle level was reduced to less than 10% of the outdoor level. At times when outdoor particle concentrations were high during weekdays, the indoor level was about 25% of the outdoor level. Thus, the possible adverse health effects of nitrogen oxides and particles indoors could be countered by efficient filtration. We also showed that inclusion of heat recovery equipment can make new ventilation installations economical.  相似文献   

6.
This study evaluated the interrelations between indoor and outdoor bioaerosols in a bedroom under a living condition. Two wideband integrated bioaerosol sensors were utilized to measure indoor and outdoor particulate matter (PM) and fluorescent biological airborne particles (FBAPs), which were within a size range of 0.5-20 μm. Throughout this one-month case study, the median proportion of FBAPs in PM by number was 19% (5%; the interquartile range, hereafter) and 17% (3%) for indoors and outdoors, respectively, and those by mass were 78% (12%) and 55% (9%). According to the size-resolved data, FBAPs dominated above 2 and 3.5 μm indoors and outdoors, respectively. Comparing indoor upon outdoor ratios among occupancy and window conditions, the indoor FBAPs larger than 3.16 μm were dominated by indoor sources, while non-FBAPs were mainly from outdoors. The occupant dominated the indoor source of both FBAPs and non-FBAPs. Under awake and asleep, count- and mass-based mean emission rates were 45.9 and 18.7 × 106 #/h and 5.02 and 2.83 mg/h, respectively. Based on indoor activities and local outdoor air quality in Singapore, this study recommended opening the window when awake and closing it during sleep to lower indoor bioaerosol exposure.  相似文献   

7.
Abstract Quasi‐ultrafine (quasi‐UF) particulate matter (PM0.25) and its components were measured in indoor and outdoor environments at four retirement communities in Los Angeles Basin, California, as part of the Cardiovascular Health and Air Pollution Study (CHAPS). The present paper focuses on the characterization of the sources, organic constituents and indoor and outdoor relationships of quasi‐UF PM. The average indoor/outdoor ratios of most of the measured polycyclic aromatic hydrocarbons (PAHs), hopanes, and steranes were close to or slightly lower than 1, and the corresponding indoor–outdoor correlation coefficients (R) were always positive and, for the most part, moderately strong (median R was 0.60 for PAHs and 0.74 for hopanes and steranes). This may reflect the possible impact of outdoor sources on indoor PAHs, hopanes, and steranes. Conversely, indoor n‐alkanes and n‐alkanoic acids were likely to be influenced by indoor sources. A chemical mass balance model was applied to both indoor and outdoor speciated chemical measurements of quasi‐UF PM. Among all apportioned sources of both indoor and outdoor particles, vehicular emissions was the one contributing the most to the PM0.25 mass concentration measured at all sites (24–47% on average).

Practical Implications

Although people (particularly the elderly retirees of our study) generally spend most of their time indoors, a major portion of the PM0.25 particles they are exposed to comes from outdoor mobile sources. This is important because, an earlier investigation, also conducted within the Cardiovascular Health and Air Pollution Study (CHAPS), showed that indoor‐infiltrated particles from mobile sources are more strongly correlated with adverse health effects observed in the elderly subjects living in the studied retirement communities compared with other particles found indoors ( Delfino et al., 2008 ).  相似文献   

8.
A two stage intervention study was carried out to establish the degree to which a newly developed, electrostatic air cleaning (EAC) system can improve indoor air quality (IAQ) by reducing the number of airborne fine particles. The IAQ and how employees in a city centre office (49 m2) perceived it, was monitored from May until November 1998. The number of fine particles, PM3 (0.3-3.0 microm); number of coarse particles, PM7 (3.0-7.0 microm); number of small positive and negative air ions; relative humidity and temperature were recorded in and out of doors. To assess the employees' perception of any changes in their work environment, a questionnaire was completed. Number of particles, relative humidity and temperature were also recorded in a nearby office, equipped with an identical air processor, where no interventions were made. The results from the first intervention (Stage 1), comparing number of airborne particles outdoors to indoors, gave a 19% reduction for PM3 and a 67% reduction for PM7 (P < 0.001). The reduction in PM3 was inconsistent and not statistically significant (P = 0.3). The reduction in PM7 from outdoors and the removal of PM7 created indoors was achieved by optimizing the existing air moving equipment. The results from the second intervention (Stage 2--with EAC units installed) comparing indoor to outdoor values, gave a further reduction in PM3 of 21% (P < 0.001) and a further 3% reduction for PM7 (P > 0.05). Therefore, at the end of Stage 2, the total reductions in particles from outdoors to indoors were 40% for PM3 and 70% for PM7 (P < 0.001). The Stage 2 results strongly suggest that electrostatic forces, created by the EAC unit(s) improved the removal of PM3, with no further significant improvement in the reduction of PM7. The questionnaire indicated an improvement in the IAQ, as perceived by the employees. The results suggest that the EAC system is effective in reducing PM3 and thereby improving IAQ in an urban office.  相似文献   

9.
Although almost all epidemiological studies of smaller airborne particles only consider outdoor concentrations, people in Central Europe actually spend most of their time indoors. Yet indoor pollutants such as organic gases, allergens and dust are known to play a prominent role, often affecting human health more than outdoor ones. The aim of this study was to ascertain how the indoor particle size distributions of submicron and ultrafine particles correlate with the outdoor concentrations in the absence of significant indoor sources. A typical indoor particle size distribution pattern has one or two modes. In the absence of significant indoor activities such as smoking, cooking etc., outdoor particles were found to be a very important source of indoor particles. The study shows that in the absence of significant indoor sources, the number of indoor concentrations of particles in this size range are clearly lower than the outdoor concentrations. This difference is greater, the higher the number of outdoor concentrations. However, the drop in concentration is not uniform, with the decrease in concentration of smaller particles exceeding that of larger ones. By contrast, the findings with larger particle sizes (diameter > 1 microm) exhibit rather linear concentration decreases. The non-uniform drop in the number of concentrations from outdoors to indoors in our measurements considering smaller particles ( >0.01 microm) is accompanied by a shift of the concentration maxima to larger particle diameters.  相似文献   

10.
Personal monitoring of particulate matter (PM) exposure in infants is difficult. Indirect, microenvironment modelling methods are more practical. Infants spend most of their time indoors at home and the aim of this study was to investigate spatial variations in PM concentrations within homes. Three size fractions of PM - particles with an aerodynamic diameter of less than 10 microm (PM(10)), less than 2.5 microm (PM(2.5)) and total suspended particulates (TSP) - were monitored in the homes of 77 infants (0-2 years) using a multi-stage virtual impactor. In all homes PM was monitored simultaneously in the main living room at heights of 1.4 m and 0.2 m from the floor. In 26 of these homes monitoring was also conducted simultaneously in the infant's bedroom. Further, PM(10) was measured simultaneously in the living room, bedroom and child's cot in 14 homes using a real-time photometer. All homes in the study were non-smoking households. On average, there were no significant differences between concentrations of any of the different PM size fractions measured at the two heights (living room) and between living room and bedroom concentrations. However, there were only moderate correlations in concentrations between the different microenvironments and in some homes there was considerable variation between sampling sites. From the real-time measurements there seemed to be good agreement between concentrations measured in different rooms and in the cot and short-term peak concentrations at one sampling site were often mirrored at other sites. These results suggest that, although large variations in PM concentrations between rooms within homes can occur, a single monitoring station can provide a reasonable estimate of indoor concentrations.  相似文献   

11.
Fourier transform infrared (FTIR) spectra of outdoor, indoor, and personal fine particulate matter (PM(2.5)) samples were collected during the Relationship of Indoor, Outdoor, and Personal Air (RIOPA) study. FTIR spectroscopy provides functional group information about the entire PM(2.5) sample without any chemical preparation. It is particularly important to characterizing the poorly understood organic fraction of PM(2.5). To our knowledge this is the first time that FTIR spectroscopy has been applied to a PM(2.5) exposure study. The results were used to chemically characterize indoor air and personal exposure. Sulfate was strongest in outdoor samples, which is consistent with the generally accepted understanding that sulfate is of outdoor origin. Absorbances attributed to soil dust were also seen in many outdoor and some indoor and personal samples. Inorganic nitrate absorbances were a common feature of many California and some New Jersey samples. Carbonyl absorbances showed substantial variation in strength, number of peaks, and wave number shift between samples, indicating variability in composition and sources. Absorbances attributed to aliphatic hydrocarbon and amide functional groups were enhanced in many personal and indoor samples, which suggested the influence of indoor sources in these homes. We speculate that meat cooking is one possible source of particulate amides. PRACTICAL IMPLICATIONS: To our knowledge this is the first time that FTIR spectroscopy has been used to characterize the composition of indoor and personal PM(2.5). The presence of sulfate, nitrate, ammonium, soil dust and a number of organic functional groups are all detected in one analysis on filter samples without extraction or other sample preparation. Differences between indoor and outdoor spectra are used to identify spectral features due to indoor-generated PM(2.5). Particularly interesting are the much larger aliphatic absorbances, shifts in carbonyl absorbances, and occasional small amide absorbances found in indoor and personal spectra but rarely in outdoor spectra. These observations are important because organics make up a large portion of PM(2.5) mass and their composition and properties are poorly characterized. The properties and behavior of organic compounds in airborne particles are often predicted based on their functional group composition. This analysis begins the development of a better understanding of the functional group composition of indoor and personal PM(2.5) and how it differs from that of outdoor PM(2.5). Eventually this will lead to an improved understanding of the properties, behavior and effects of PM(2.5) of indoor and outdoor origin.  相似文献   

12.
对上海市某住宅建筑室内外PM10、PM2.5、PM1的浓度进行了测量,研究了最小通风量(外门窗关闭)条件下3种天气时颗粒浓度随时间变化的规律以及相关性,分析了颗粒物浓度与环境温湿度参数之间的关系。研究结果显示,测试期间,室内外空气中细颗粒(PM 2.5)占可吸入颗粒(PM 10)浓度比例分别达65%和87%以上;无明显室内源时,I/O比值小于1且随粒径减小而减小;室内外颗粒浓度相关性与粒径大小有关系,PM1、PM2.5的浓度相关性大于PM10。研究还表明,颗粒物浓度的关联性与天气状况有关系,多云、雨天和阴天时浓度关联性有显著差别;颗粒物的浓度受到室内外温湿度的影响,且受天气状况影响而呈现复杂性。  相似文献   

13.
Most of human exposure to atmospheric pollutants occurs indoors, and the components of outdoor aerosols may have been changed in the way before reaching indoor spaces. Here we conducted real-time online measurements of mass concentrations and chemical composition of black carbon and the non-refractory species in PM2.5 in an occupied office for approximately one month. The open-close windows and controlled dampness experiments were also performed. Our results show that indoor aerosol species primarily originate from outdoors with indoor/outdoor ratio of these species typically less than unity except for certain organic aerosol (OA) factors. All aerosol species went through filtration upon transport indoors. Ammonium nitrate and fossil fuel OA underwent evaporation or particle-to-gas partitioning, while less oxidized secondary OA (SOA) underwent secondary formation and cooking OA might have indoor sources. With higher particulate matter (PM) mass concentration outdoors than in the office, elevated natural ventilation increased PM exposure indoors and this increased exposure was prolonged when outdoor PM was scavenged. We found that increasing humidity in the office led to higher indoor PM mass concentration particularly more oxidized SOA. Overall, our results highlight that indoor exposure of occupants is substantially different from outdoor in terms of mass concentrations and chemical species.  相似文献   

14.
Impacts of individual behavior on personal exposure to particulate matter (PM) and the associated individual health effects are still not well understood. As outdoor PM concentrations exhibit highly temporal and spatial variations, personal PM exposure depends strongly on individual trajectories and activities. Furthermore, indoor environments deserve special attention due to the large fraction of the day people spend indoors. The indoor PM concentration in turn depends on infiltrated outdoor PM and indoor particle sources, partially caused by the activities of people indoor.We present an approach to estimate PM2.5 exposure levels for individuals based upon existing data sources and models. For this pilot study, six persons kept 24-hour diaries and GPS tracks for at least one working day and one weekend day, providing their daily activity profiles and the associated geographical locations. The survey took place in the city of Münster, Germany in the winter period between October 2006 and January 2007. Environmental PM2.5 exposure was estimated by using two different models for outdoor and indoor concentrations, respectively. For the outdoor distribution, a dispersion model was used and extended by actual ambient fixed site measurements. Indoor concentrations were modeled using a simple mass balance model with the estimated outdoor concentration fraction infiltrated and indoor activities estimated from the diaries. A limited number of three 24-hour indoor measurements series for PM were performed to test the model performance.The resulting average daily exposure of the 14 collected profiles ranged from 21 to 198 µg m− 3 and showed a high variability over the day as affected by personal behavior. Due to the large contribution of indoor particle sources, the mean 24-hour exposure was in most cases higher than the daily means of the respective outdoor fixed site monitors.This feasibility study is a first step towards a more comprehensive modeling approach for personal exposure, and therefore restricted to limited data resources. In future, this model framework not only could be of use for epidemiological research, but also of public interest. Any individual operating a GPS capable device may become able to obtain an estimate of its personal exposure along its trajectory in time and space. This could provide individuals a new insight into the influence of personal habits on their exposure to air pollution and may result in the adaptation of personal behavior to minimize risks.  相似文献   

15.
Indoor fine particles (FPs) are a combination of ambient particles that have infiltrated indoors, and particles that have been generated indoors from activities such as cooking. The objective of this paper was to estimate the infiltration factor (Finf) and the ambient/non‐ambient components of indoor FPs. To do this, continuous measurements were collected indoors and outdoors for seven consecutive days in 50 non‐smoking homes in Halifax, Nova Scotia in both summer and winter using DustTrak (TSI Inc) photometers. Additionally, indoor and outdoor gravimetric measurements were made for each 24‐h period in each home, using Harvard impactors (HI). A computerized algorithm was developed to remove (censor) peaks due to indoor sources. The censored indoor/outdoor ratio was then used to estimate daily Finfs and to determine the ambient and non‐ambient components of total indoor concentrations. Finf estimates in Halifax (daily summer median = 0.80; daily winter median = 0.55) were higher than have been reported in other parts of Canada. In both winter and summer, the majority of FP was of ambient origin (daily winter median = 59%; daily summer median = 84%). Predictors of the non‐ambient component included various cooking variables, combustion sources, relative humidity, and factors influencing ventilation. This work highlights the fact that regional factors can influence the contribution of ambient particles to indoor residential concentrations.  相似文献   

16.
Source contributions to urban fine particulate matter (PM(2.5) ) have been modelled using land use regression (LUR) and factor analysis (FA). However, people spend more time indoors, where these methods are less explored. We collected 3-4- day samples of nitrogen dioxide and PM(2.5) inside and outside of 43 homes in summer and winter, 2003-2005, in and around Boston, Massachusetts. Particle filters were analysed for black carbon and trace element concentrations using reflectometry, X-ray fluorescence (XRF), and high-resolution inductively coupled mass spectrometry (ICP-MS). We regressed indoor against outdoor concentrations modified by ventilation, isolating the indoor-attributable fraction, and then applied constrained FA to identify source factors in indoor concentrations and residuals. Finally, we developed LUR predictive models using GIS-based outdoor source indicators and questionnaire data on indoor sources. FA using concentrations and residuals reasonably separated outdoor (long-range transport/meteorology, fuel oil/diesel, road dust) from indoor sources (combustion, smoking, cleaning). Multivariate LUR regression models for factors from concentrations and indoor residuals showed limited predictive power, but corroborated some indoor and outdoor factor interpretations. Our approach to validating source interpretations using LUR methods provides direction for studies characterizing indoor and outdoor source contributions to indoor cocentrations. PRACTICAL IMPLICATIONS: By merging indoor-outdoor modeling, factor analysis, and LUR-style predictive regression modeling, we have added to previous source apportionment studies by attempting to corroborate factor interpretations. Our methods and results support the possibility that indoor exposures may be modeled for epidemiologic studies, provided adequate sample size and variability to identify indoor and outdoor source contributions. Using these techniques, epidemiologic studies can more clearly examine exposures to indoor sources and indoor penetration of source-specific components, reduce exposure misclassification, and improve the characterization of the relationship between particle constituents and health effects.  相似文献   

17.
The biologically relevant characteristics of particulate matter (PM) in homes are important to assessing human health. The concentration of particulate reactive oxygen species (ROS) was assessed in eight homes and was found to be lower inside (mean ± s.e. = 1.59 ± 0.33 nmol/m3) than outside (2.35 ± 0.57 nmol/m3). Indoor particulate ROS concentrations were substantial and a major fraction of indoor particulate ROS existed on PM2.5 (58 ± 10%), which is important from a health perspective as PM2.5 can carry ROS deep into the lungs. No obvious relationships were evident between selected building characteristics and indoor particulate ROS concentrations, but this observation would need to be verified by larger, controlled studies. Controlled experiments conducted at a test house suggest that indoor ozone and terpene concentrations substantially influence indoor particulate ROS concentrations when outdoor ozone concentrations are low, but have a weaker influence on indoor particulate ROS concentrations when outdoor ozone concentrations are high. The combination of substantial indoor concentrations and the time spent indoors suggest that further work is warranted to assess the key parameters that drive indoor particulate ROS concentrations.  相似文献   

18.
Indoor air PM2.5 and PM10 samples were collected at the different types of indoor enviornment in the four hospitals and their adjacent outdoor environments in Guangzhou, China, during the summertime. The objectives of this study were (1) to characterize the indoor PM concentrations and associated carbonaceous species in hospitals, (2) to investigate the potential indoor sources and (3) to reconstruct carbonaceous composition in PM. Additionally, regression analysis was made to evaluate effect of outdoor sources to indoor PM levels and comparison was made between I/O levels in different types of indoor environment to evaluate effects of human activities and ventilation types to indoor PM levels.  相似文献   

19.
对一普通办公楼及甲级办公楼办公室内、外颗粒物浓度进行监测。监测结果显示建筑室外颗粒物污染严重;普通办公楼室内颗粒物污染严重,甲级办公楼室内颗粒物浓度较低;甲级办公楼室内外颗粒物浓度I/O比值较普通办公楼小;两办公楼室内、外的PM2.5污染均较PMIO污染频繁;室内人和物的剧烈活动、吸烟等活动会造成严重的室内颗粒物污染。  相似文献   

20.
Y. Yoda  K. Tamura  M. Shima 《Indoor air》2017,27(5):955-964
Endotoxins are an important biological component of particulate matter and have been associated with adverse effects on human health. There have been some recent studies on airborne endotoxin concentrations. We collected fine (PM2.5) and coarse (PM10‐2.5) particulate matter twice on weekdays and weekends each for 48 hour, inside and outside 55 homes in an urban city in Japan. Endotoxin concentrations in both fractions were measured using the kinetic Limulus Amebocyte Lysate assay. The relationships between endotoxin concentrations and household characteristics were evaluated for each fraction. Both indoor and outdoor endotoxin concentrations were higher in PM2.5 than in PM10‐2.5. In both PM2.5 and PM10‐2.5, indoor endotoxin concentrations were higher than outdoor concentrations, and the indoor endotoxin concentrations significantly correlated with outdoor concentrations in each fraction (R2=0.458 and 0.198, respectively). Indoor endotoxin concentrations in PM2.5 were significantly higher in homes with tatami or carpet flooring and in homes with pets, and lower in homes that used air purifiers. Indoor endotoxin concentrations in PM10‐2.5 were significantly higher in homes with two or more children and homes with tatami or carpet flooring. These results showed that the indoor endotoxin concentrations were associated with the household characteristics in addition to outdoor endotoxin concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号