首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, antifouling poly(vinyl chloride) (PVC) blend membranes were prepared by blending the PVC based amphiphilic copolymer PVC‐g‐poly(hydroxyethyl methacrylate) (PVC‐g‐PHEMA), synthesized by atom transfer radical polymerization (ATRP), into the hydrophobic PVC matrix via the nonsolvent‐induced phase separation method. The in situ ATRP reaction solutions were also used as the blend additives to improve membrane performance. Attenuated total reflectance–Fourier transform infrared spectroscopy and X‐ray photoelectron spectroscopy indicated that the blend membranes based on the two blend routes exhibited similar surface chemical compositions. The membrane morphology and surface wettability were determined by scanning electronic microscopy and water contact angle measurement, respectively. The blend membranes showed improved water permeability, comparable rejections and enhanced antifouling properties compared with the pure PVC membrane. The PVC blend membranes also had excellent long‐term stability in terms of chemical compositions and fouling resistance. The results demonstrated that ATRP was a promising technique to synthesize amphiphilic copolymer and prepare stable blend antifouling membranes. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45832.  相似文献   

2.
The structure and performance of modified poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVdF‐co‐HFP) ultra‐filtration membranes prepared from casting solutions with different concentrations of poly(vinyl pyrrolidone) (PVP) were investigated in this study. Membrane properties were studied in terms of membrane compaction, pure water flux (PWF), water content (WC), membrane hydraulic resistance ( R m), protein rejection, molecular weight cut‐off (MWCO), average pore size, and porosity. PWF, WC, and thermal stability of the blend membranes increased whereas the crystalline nature and mechanical strength of the blend membranes decreased when PVP additive concentration was increased. The contact angle (CA) decreased as the PVP concentration increased in the casting solution, which indicates that the hydro‐philicity of the surface increased upon addition of PVP. The average pore size and porosity of the PVdF‐co‐HFP membrane increased to 42.82 Å and 25.12%, respectively, when 7.5 wt% PVP was blended in the casting solution. The MWCO increased from 20 to 45 kDa with an increase in PVP concentration from 0 to 7.5 wt%. The protein separation study revealed that the rejection increased as the protein molecular weight increased. The PVdF‐co‐HFP/PVP blended membrane prepared from a 7.5 wt% PVP solution had a maximum flux recovery ratio of 74.3%, which explains its better antifouling properties as compared to the neat PVdF‐co‐HFP membrane. POLYM. ENG. SCI., 55:2482–2492, 2015. © 2015 Society of Plastics Engineers  相似文献   

3.
In this study, a comblike amphiphilic graft copolymer containing poly(vinyl chloride) (PVC) backbones and poly(oxyethylene methacrylate) [poly(ethylene glycol) methylether methacrylate (PEGMA)] side chains was facilely synthesized via an atom transfer radical polymerization method. Secondary chlorines in PVC were used as initial sites to graft a poly[poly(ethylene glycol) methylether methacrylate] [P(PEGMA)] brush. The synthesized PVC‐g‐P(PEGMA) graft copolymer served as an efficient additive for the hydrophilicity modification of the poly(vinylidene fluoride) (PVDF) membrane via a nonsolvent‐induced phase‐inversion technique. A larger pore size, higher porosity, and better connectivity were obtained for the modified PVDF membrane; this facilitated the permeability compared to the corresponding virgin PVDF membrane. In addition, the modified PVDF membrane showed a distinctively enhanced hydrophilicity and antifouling resistance, as suggested by the contact angle measurement and flux of bovine serum albumin solution tests, respectively. Accordingly, the PVC‐g‐P(PEGMA) graft copolymer was demonstrated as a successful additive for the hydrophilicity modification, and this study will likely open up new possibilities for the development of efficient amphiphilic PVC‐based copolymers for the excellent hydrophilicity modification of PVDF membranes. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

4.
An antifouling surface is highly desirable for many biomedical applications. In this study, poly(vinyl chloride) (PVC) films were endowed with the improved properties of resisting nonspecific protein adsorption and platelet adhesion simply through being coated with a kind of mixed‐charge zwitterionic polymer, poly(3‐sulfopropyl methacrylate–methacrylatoethyl trimethyl ammonium chloride–glycidyl methacrylate) (PSTG), with random moieties of negatively charged 3‐sulfopropyl methacrylate potassium, positively charged [2‐(methacryloyloxy)‐ethyl] trimethylammonium chloride, and glycidyl methacrylate. The PSTG‐grafted PVC films were formed by the simple immersion of an amino‐functionalized PVC film into a PSTG solution. A grafting density of 220.84 µg/cm2 of PSTG4‐grafted PVC film was successfully obtained. The PSTG4‐grafted PVC film showed a lower contact angle (37.5 °) than the ungrafted PVC film (98.3 °). The in vitro protein adsorption results show that the bovine serum albumin adsorption amount decreased 6.72 µg/cm2 in the case of the PSTG4‐grafted PVC film, whereas that on the ungrafted PVC film was 28.54 µg/cm2. So, PSTG‐grafted PVC films could be promising materials for medical devices. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44632.  相似文献   

5.
Chlorinated poly(vinyl chloride) (CPVC) membranes for microfiltration processes were prepared with the combined process of a solvent evaporation technique and the water‐vapor induced‐phase‐inversion method. CPVC membranes with a mean pore size of 0.7 μm were very hydrophobic. These membranes were subjected to surface modification by ultraviolet (UV)‐assisted graft polymerization with N‐vinyl‐2‐pyrrolidinone (NVP) to increase their surface wettability and decrease their adsorptive fouling. The grafting yields of the modified membranes were controlled by alteration of UV irradiation time and NVP monomer concentration. The changes in chemical structure between the CPVC membrane and the CPVC‐g‐poly(N‐vinyl‐2‐pyrrolidinone) membrane and the variation of the topologies of the modified PVC membranes were characterized by Fourier transform infrared spectroscopy, gel permeation chromatography, and field emission scanning electron microscopy. According to the results, the graft yield of the modified CPVC membrane reached a maximum at 5 min of UV exposure time and 20 vol % NVP concentration. The filtration behavior of these membranes was investigated with deionized water by a crossflow filtration measurement. The surface hydrophilicity and roughness were easily changed by the grafting of NVP on the surface of the CPVC membrane through a simultaneous irradiation grafting method by UV irradiation. To confirm the effect of grafting for filtration, we compared the unmodified and modified CPVC membranes with respect to their deionized water permeation by using crossflow filtration methods. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 3188–3195, 2003  相似文献   

6.
A novel grafted polymer was prepared in one step through free‐radical melt grafting in a single‐screw extruder. It was shown that the addition of styrene (St) to the melt‐grafting system as a comonomer could significantly enhance the grafting degree of methyl methacrylate (MMA) onto polypropylene (PP) and reduce the degradation of the PP matrix by means of Fourier transform infrared and melt flow rate testing, respectively. Then, the potential of using multimonomer‐grafted PP, which was designated PP‐g‐(St‐co‐MMA), as the compatibilizer in PP/poly(vinyl chloride) (PVC) blends was also examined. In comparison with PP/PVC blends, the average size of the dispersed phase was greatly reduced in grafted polypropylene (gPP)/PVC blends because of the addition of the PP‐g‐(St‐co‐MMA) graft copolymer. The tensile strength of the gPP/PVC blends increased significantly, and the impact strength was unchanged from that of the pure PP/PVC blends. The results of differential scanning calorimetry and scanning electron microscopy suggested that the compatibility of the PP/PVC blends was improved. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
Poly(ethylene‐co‐vinyl alcohol)/poly(vinyl pyrrolidone) (EVAL/PVP) blend membranes with antifouling properties were prepared by nonsolvent induced phase separation. Residual PVP in the sample was calculated by infrared spectroscopic data and confirmed by thermogravimetric analysis. The effect of residual PVP on hydrophilicity and permeation characteristics of the membranes was evaluated. Porosity and equilibrium water content of the membranes were influenced by the addition of PVP. The effect of protein fouling on flux using bovine serum albumin as a model system was studied in detail. The residual PVP content could enhance the antifouling property of the membrane. All membranes proved to have sufficient mechanical strength to withstand pressure‐driven filtrations.  相似文献   

8.
In this work, the compatibilization of blends of plasticized polyvinyl chloride (PVC) and polystyrene (PS) with poly(styrene‐con‐methylolacrylamide) (PSnMA) was investigated. The PSnMA was synthesized by emulsion polymerization with different amounts of n‐methylolacrylamide (nMA). Particle size and phase behavior was determined by scanning electron microscopy, and mechanical properties were determined in an Universal Testing Machine. Micrographs revealed that an appreciable size reduction of the dispersed phase was achieved when small amounts of PSnMA were added to the blend, and as the amount of nMA was increased, particle size decreased. When the (PVC/PS/PSnMA) blend was subjected to solvent extraction to remove PS and unreacted PVC, the residue showed a single Tg. Tensile modulus and the ultimate strength of the blends increased with PSnMA content. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
In order to realize the self‐crosslinking and cocrosslinking of poly(vinyl chloride) (PVC) with nitrile‐butadiene rubber (NBR), PVC with pendent N,N‐diethyldithiocarbamate groups (PVC‐SR) was prepared from the reaction of PVC with sodium SR in butanone. The PVC‐SR was self‐crosslinked and the PVC‐SR/NBR blend was cocrosslinked under heating at 170°C. The effect of the degree of functionality of PVC‐SR on the torque, gel content, glass‐transition temperature, and tensile properties was investigated. The results showed that the crosslinking reaction did not occur for PVC, NBR, or the PVC/NBR blend. Introducing the SR groups into PVC caused the crosslinking reaction to occur and the high gel contents of the crosslinked samples were obtained in 15 min. The degree of crosslinking increased with the degree of functionality of PVC‐SR. The mechanism of the crosslinking reaction was discussed. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 634–638, 2001  相似文献   

10.
Functionalized polymer membranes have been used as sensor materials for fabrication of electronic tongue. Here, we report the synthesis and characterization of a novel poly(N‐[4H‐1,2,4‐triazol‐4‐yl]acrylamide) (PNTA) for liquid phase aliphatic alcohol sensing in the form of membranes prepared after blending with poly(vinyl chloride) (PVC). Three PNTA‐PVC based membranes were prepared for sensing of six aliphatic alcohols. Polymer membranes were characterized by spectroscopic techniques. Polar groups on PNTA molecules contribute to the alcohol sensing characteristics. The membrane electric potential, generated by the interaction between membrane surface and aqueous aliphatic alcohols, was monitored with the developed multi‐channel electrode based prototype sensing system (MEBPSS). The polymer membranes showed distinct and repeatable response patterns toward different aliphatic alcohols. Among them PNTA‐PVC12 membrane showed maximum discrimination ability due to the PNTA molecules on the membrane surface with highest charge density as ascertained from field emission scanning electron microscopic studies. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44675.  相似文献   

11.
The physical properties of poly(vinyl chloride) (PVC) and poly(N‐isopropylacrylamide) [poly(NIPAAm)] blend systems, and their corresponding graft copolymers such as PVC‐g‐NIPAAm, were investigated in this work. The compatible range for PVC–poly(NIPAAm) blend systems is less than 15 wt % poly(NIPAAm). The water absorbencies for the grafted films increase with increase in graft percentage. The water absorbencies for the blend systems increase with increase in poly(NIPAAm) content within the compatible range for the blends, but the absorbencies decrease when the amount of poly(NIPAAm) is more than the compatible range in the blend system. The tensile strengths for the graft copolymers are larger than the corresponding blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 170–178, 2000  相似文献   

12.
This work reports the synthesis and processing of a new flexible material based on PVC produced by living radical polymerization. The synthesis was carried out in a two‐step process. In the first step the macroinitiator α, ω‐di(iodo)poly(butyl acrylate) [α, ω‐di(iodo)PBA] was synthesized in water by single electron transfer/degenerative chain transfer mediated living radical polymerization (SET‐DTLRP) catalyzed by Na2S2O4. In the second step this macroinitiator was reinitiated by SET‐DTLRP of vinyl chloride (VC), thereby leading to the formation of the block copolymer poly(vinyl chloride)‐b‐poly(butyl acrylate)‐b‐poly(vinyl chloride) [PVC‐b‐PBA‐b‐PVC]. This new material was processed on a laboratory scale. The DMTA traces showed only a single glass transition temperature, thus indicating that no phase segregation was present. The copolymers were studied with regard to their processing, miscibility, and mechanical properties. The first comparison with commercial formulations made with PVC and dioctyl phthalate (DOP) is presented. J. VINYL ADDIT. TECHNOL., 12:156–165, 2006. © 2006 Society of Plastics Engineers  相似文献   

13.
The compatibilization of various poly(vinyl chloride) (PVC) blends was investigated. The blend systems were PVC‐polyamide 12 (PA12), PVC‐polypropylene (PP), and PVC‐ethylene‐propylene‐diene rubber (EPDM) with a new compatibilizing agent, random‐block terpolymer poly(ω‐lauryllactam‐random‐?‐caprolactam‐block‐?‐caprolactone) or systems containing these copolymers. The results were compared to those obtained in previous studies using poly(ω‐lauryllactam‐block‐?‐caprolactone) copolymer. The new block copolymer was specially synthesized by reactive extrusion. Observation by scanning electron microscopy (SEM) revealed that compatibilized blends had a finer morphology than the noncompatibilized blends. Addition of 10 weight percent (wt%) of block copolymer proved to be sufficient to give a significant improvement of the mechanical properties of the immiscible PVC blends at room temperature and at high temperatures that were above the glass transition temperature of PVC. For polyolefins, a three‐component compatibilizing system including maleated polypropylene, polyamide 12, and block copolymer was used. It was found that poly(ω‐lauryllactam‐random‐?‐caprolactam‐block‐?‐caprolactone) was the more efficient compatibilizing agent for the modification of PVC‐polyamide 12, PVC‐polypropylene, and PVC‐ethylene‐propylene‐diene rubber blends. J. VINYL. ADDIT. TECHNOL., 11:95–110, 2005. © 2005 Society of Plastics Engineers  相似文献   

14.
Poly(vinylidene fluoride) (PVDF) was blended with a new amphiphilic copolymer, poly(tetrafluoroethylene‐co‐vinyl alcohol) [poly(TFE‐VA)], via non‐solvent induced phase separation (NIPS) method to make membranes with superior antifouling properties. The effects of the VA/TFE segment ratio of the copolymer and the copolymer/PVDF blend ratio on the properties of the prepared membranes were studied. Membranes with similar water permeabilities, surface pore sizes, and rejection properties were prepared and used in bovine serum albumin (BSA) filtrations with the same initial water flux and almost the same operating pressure, to evaluate the sole effect of membrane material on fouling propensity. While the VA/TFE segment ratio strongly affected the membrane antifouling properties, the effects of the copolymer/PVDF blending ratio were not so drastic. Membrane surface hydrophilicity increased, and BSA adsorption and fouling decreased upon blending a small amount of amphiphilic copolymer with a high VA/TFE segment ratio with PVDF (copolymer/PVDF blending ratio 1:5). © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43780.  相似文献   

15.
ABSTRACT

A method for the synthesis of anion-exchange membranes by the grafting of ethylenediamine (EDA), diethylenetriamine (DETA) or pentaethylenehexamine (PEHA) onto poly(vinyl chloride) (PVC) film has been presented. The chemical structure was determined by means of Fourier Transform Infrared Spectroscopy (FTIR) and the membranes were characterized by ion-exchange capacity, chloride and nitrogen contents, water regain and surface energetics. The obtained membranes were evaluated in the Donnan dialysis (DD) of hexavalent chromium solutions. Among the membranes, those modified with EDA and DETA showed the best separation features: high flux and high recovery factor (RF). The highest degree of recovery was observed for membranes prepared by the casting of PVC solution in (THF), followed by grafting EDA.  相似文献   

16.
Hollow‐fiber ultrafiltration (UF) membranes were prepared from blends of poly(vinyl chloride) (PVC) and polystyrene (PS) with a dry/wet phase inversion method. Poly(ethylene glycol) (PEG) and N,N‐dimethylacetamide were used as the additive and solvent, respectively. The effects of the PEG concentration in the dope solution as an additive on the cross sections and inner and outer surface morphologies, permeability, and separation performance of the hollow fibers were examined. The mean pore size, pore size distribution, and mean roughness of both the inner and outer surfaces of the produced hollow fibers were determined by atomic force microscopy. Also, the mechanical properties of the hollow‐fiber membranes were investigated. UF experiments were conducted with aqueous solutions of poly(vinyl pyrrolidone) (PVP; K‐90, Mw = 360 kDa). From the results, we found that the PVC/PS hollow‐fiber membranes had two layers with a fingerlike structure. These two layers were changed from a wide and long to a thin and short morphology with increasing PEG concentration. A novel and until now undescribed shape of the nodules in the outer surfaces, which was denoted as a sea‐waves shape, was observed. The outer and inner pore sizes both increased with increasing PEG concentration. The water permeation flux of the hollow fibers increased from 104 to 367 L m?2 h?1 bar?1) at higher PEG concentrations. The PVP rejection reached the highest value at a PEG concentration of 4 wt %, whereas at higher values (from 4 to 9 wt %), the rejection decreased. The same trend was found also for the tensile stress at break, Young's modulus, and elongation at break of the hollow fibers. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 989‐1004, 2013  相似文献   

17.
Blends of poly(vinyl chloride) with chlorinated poly(vinyl chloride) (PVC), and blends of different chlorinated poly(vinyl chlorides) (CPVC) provide an opportunity to examine systematically the effect that small changes in chemical structure have on polymer-polymer miscibility. Phase diagrams of PVC/CPVC blends have been determined for CPVC's containing 62 to 38 percent chlorine. The characteristics of binary blends of CPVC's of different chlorine contents have also been examined using differential calorimetry (DSC) and transmission electron microscopy. Their mutual solubility has been found to be very sensitive to their differences in mole percent CCl2 groups and degree of chlorination. In metastable binary blends of CPVC's possessing single glass transition temperatures (Tg) the rate of phase separation, as followed by DSC, was found to be relatively slow at temperatures 45 to 65° above the Tg of the blend.  相似文献   

18.
A poly(methyl methacrylate) (PMMA)‐b‐poly[2‐(N,N‐dimethylamino) ethyl methacrylate] (PDMAEMA) block copolymer was successfully synthesized by a reversible addition–fragmentation chain‐transfer method. The resulting copolymer was used to prepare poly(vinylidene fluoride) blend membranes via a phase‐inversion technique. The polymorphism, structure, and properties of the blend membranes were investigated by Fourier transform infrared spectrometry, scanning electron microscopy (SEM), ζ potential analysis, and filtration. The results indicate that PMMA‐b‐PDMAEMA could migrate onto the surface of the membrane during the coagulation process, and more of the β‐crystal phase appeared with the increase of the block copolymer in the membranes. The surface morphology and cross section of the membranes were also affected by the copolymer, as shown by SEM. The ζ‐potential results show that the surface charges of the membrane could be changed from positive to negative at an isoelectric point as the pH increased. The blend membrane also exhibited good pH sensitivity, and its water flux showed a great dependence on pH. The filtration experiment also indicated that the blend membrane had good hydrophilicity and antifouling properties. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40685.  相似文献   

19.
In this work, ethylene‐co‐vinyl acetate (EVA), poly(ethylene‐co‐octene) (POE), and poly(vinyl chloride) (PVC) blends were processed in a molten state process using a corotating twin‐screw extruder to assess both the balance of mechanical properties and physical interactions in the melt state. Tensile measurements, scanning electron microscopy, and oscillatory rheometry were performed. By means of flow curves, the parameters of the power law as well as the distribution of relaxation times were assessed with the aid of a nonlinear regularization method. The mechanical properties for the EVA‐POE blend approximated the values for POE, while inclusion of PVC shifted the modulus values to those of neat EVA. The rise in modulus was corroborated by the PVC phase dispersion as solid particles that act as a reinforcement for the ternary blend. The rheological properties in the molten state show that the POE does not present molecular entanglement effects and so tends both to diminish the EVA mechanical properties and increase the fluidity of the blend. However, the addition of PVC both restored the EVA typical pseudoplastic feature and promoted the increase in the viscosity and the mechanical properties of the ternary blend. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
Poly(vinylidene fluoride) (PVDF) powders were grafted with N‐vinyl pyrrolidone using the pre‐irradiation induced graft polymerization technique. The effects of reaction time, absorbed dose, and monomer concentration on the degree of grafting were investigated, and the grafted PVDF powders were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, and differential scanning calorimetry. The grafted PVDF powders were also cast into microfiltration (MF) membranes via the phase‐inversion method. The contact angle and water uptake were measured. The membrane morphology was studied by scanning electron microscopy, and the water filtration properties of the membranes were tested. The antifouling properties were determined through measurements of the recovery percentage of pure water flux after the MF membranes were fouled with bovine serum albumin solution. The results confirmed that the existence of poly(N‐vinyl pyrrolidone) (PVP) graft chains improved the hydrophilicity and antifouling properties of the MF membranes cast from PVDF‐g‐PVP powders. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号