首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
The drawability of melt‐spun poly(vinyl alcohol) (PVA) fibers and its structure evolution during hot‐drawing process were studied by differential scanning calorimetry (DSC), two dimensional X‐ray diffraction (2‐D WAXD) and dynamic mechanical analysis (DMA). The results showed that the water content of PVA fibers should be controlled before hot‐drawing and the proper drying condition was drying at 200°C for 3 min. PVA fibers with excellent mechanical properties could be obtained by drawing at 200°C and 100 mm/min. The melt point and crystallinity of PVA fibers increased with the draw ratio increasing. The 2‐D WAXD patterns of PVA fibers changed from circular scattering pattern to sharp diffraction point, confirming the change of PVA fibers from random orientation to high degree orientation. Accordingly, the tensile strength of PVA fibers enhanced by hot‐drawing, reaching 1.85 GPa when the draw ratio was 16. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

2.
The continuous production of ultra‐high‐molecular‐weight polyethylene (UHMWPE) filaments was studied by the direct roll forming of nascent reactor powders followed by subsequent multistage orientation drawing below their melting points. The UHMWPE reactor powders used in this study were prepared by the polymerization of ethylene in the presence of soluble magnesium complexes, and they exhibited high yield even at low reaction temperatures. The unique, microporous powder morphology contributed to the successful compaction of the UHMWPE powders into coherent tapes below their melting temperatures. The small‐angle X‐ray scattering study of the compacted tapes revealed that folded‐chain crystals with a relatively long‐range order were formed during the compaction and were transformed into extended‐chain crystals as the draw ratio increased. Our results also reveal that the drawability and tensile and thermal properties of the filaments depended sensitively on both the polymerization and solid‐state processing conditions. The fiber drawn to a total draw ratio of 90 in the study had a tensile strength of 2.5 GPa and a tensile modulus of 130 GPa. Finally, the solid‐state drawn UHMWPE filaments were treated with O2 plasma, and the enhancement of the interfacial shear strength by the surface treatment is presented. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 718–730, 2005  相似文献   

3.
A continuous vibrating zone‐drawing (CVZD) was applied to study the effect of vibration on the mechanical properties and superstructure of isotactic polypropylene fibers. The CVZD treatment was a new drawing method by which the fiber was continuously drawn at a rate of 0.5 m/min under vibration using the specially designed apparatus. The CVZD treatment was carried out in five steps at a drawing temperature of 150°C and a frequency of 100 Hz, and applied tensions increased step by step with processing in the range of 14.8 to 207 MPa. The obtained fiber had a birefringence of 0.0373, crystallinity of 62.4%, tensile modulus of 17.6 GPa, and tensile strength of 1.11 GPa. These values are higher than those of the continuous zone‐drawn isotactic polypropylene fiber previous reported. The vibration added to the fibers during the zone‐drawing was effective in developing amorphous orientation and improving the mechanical properties. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 600–608, 2001  相似文献   

4.
《Polymer Composites》2017,38(6):1215-1220
The mechanical properties of ultra‐high molecular weight polyethylene (UHMWPE) fibers reinforced natural rubber (NR) composites were determined, and the effects of fiber surface treatment and fiber mass fraction on the mechanical properties of the composites were investigated. Chromic acid was used to modify the UHMWPE fibers, and the results showed that the surface roughness and the oxygen‐containing groups on the surface of the fibers could be effectively increased. The NR matrix composites were prepared with as‐received and chromic acid treated UHMWPE fibers added 0–6 wt%. The treated UHMWPE fibers increased the elongation at break, tear strength, and hardness of the NR composites, especially the tensile stress at a given elongation, but reduced the tensile strength. The elongation at break increased markedly with increasing fiber mass fraction, attained maximum values at 3.0 wt%, and then decreased. The tear strength and hardness exhibited continuous increase with increasing the fiber content. Several microfibrillations between the fiber and NR matrix were observed from SEM images of the fractured surfaces of the treated UHMWPE fibers/NR composites, which meant that the interfacial adhesion strength was improved. POLYM. COMPOS., 38:1215–1220, 2017. © 2015 Society of Plastics Engineers  相似文献   

5.
Summary Hot drawing in a temperature gradient has been applied to porous high molecular weight polyethylene fibers. The porous fibers were produced by spinning a 5% solution in paraffin oil and subsequently extracting the paraffin oil in n-hexane. Spinning/drawing under appropriate conditions resulted in a fiber with a tensile strength at break of 4.1 GPa. The porosity and tensile strength of a fiber were measured as a function of draw ratio. The influence of spinning/drawing conditions is discussed in relation to fiber texture and entanglement topology.  相似文献   

6.
Poly(vinyl alcohol) (PVA) melt‐spun fibers with circular cross‐section and uniform structure, which could support high stretching, were prepared by using water as plasticizer. The effects of water content on drawability, crystallization structure, and mechanical properties of the fibers were studied. The results showed that the maximum draw ratio of PVA fibers decreased with the increase of water content due to the intensive evaporation of excessive water in PVA fibers at high drawing temperature. Hot drying could remove partially the water content in PVA as‐spun fibers, thus reducing the defects caused by the rapid evaporation of water and enhancing the drawability of PVA fibers at high drawing temperature. The decreased water content also improved the orientation and crystallization structure of PVA, thus producing a corresponding enhancement in the mechanical properties of the fibers. When PVA as‐spun fibers with 5 wt % water were drawn at 180 °C, the maximum draw ratio of 11 was obtained and the corresponding tensile strength and modulus reached ~0.9 GPa and 24 GPa, respectively. Further drawing these fibers at 215 °C and thermal treating them at 220 °C for 1.5 min, drawing ratio of 16 times, tensile strength of 1.9 GPa, and modulus of 39.5 GPa were achieved. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45436.  相似文献   

7.
Ryohei Fukae  Asuka Maekawa 《Polymer》2005,46(25):11193-11194
Gelatin fibers can be prepared by the gel-spinning method using dimethyl sulfoxide as a solvent. The use of the method and the drawing in a gel state were effective in inducing segmental orientation in gelatin fiber. The fibers showed high values for the mechanical properties of tensile strength of 180 MPa and Young's modulus of 3.4 GPa.  相似文献   

8.
In this paper, we introduce a new draw technique for polymer orientation and apply it to different polymer fibers: poly(ethylene terephthalate) or PET, nylon 6,6, and ultra‐high molecular polyethylene (UHMWPE). In this technique, a polymer is drawn uniaxially in supercritical CO2 using a custom high‐pressure apparatus. This technique can be used in replacement of a traditional drawing process or as a post‐treatment process. With PET, the technique is not effective at temperatures at or below 130°. In contrast, the process is highly effective for nylon 6,6 where CO2 drawn fibers show significantly higher crystallinity and orientation along with improved mechanical properties. While the fibers are plasticized, the drawability of the fibers is only slightly dependent on temperature. High pressure CO2 drawing of ultrahigh molecular weight polyethylene (UHMWPE) fibers is equally effective. Commercial high performance fibers can be drawn up to a ratio of 1.9 in asecond stage, resulting in large increases in tensile modulus and small improvements in tensile strength.  相似文献   

9.
High‐performance copolyimide (co‐PI) fibers were prepared via the wet spinning process of co‐polyamide acid precursors based on 3,3′,4,4′‐biphenyldianhydride (BPDA) and a mixture of three diamines namely p‐phenylene diamine (p‐PDA), 2‐(4‐aminophenyl)‐5‐aminobenzimidazole (BIA), and 4,4′‐oxidianiline (ODA), followed by drawing and imidization at high temperatures. Effects of the ODA and BIA contents on the molecular packing, morphology, hydrogen‐bonding interactions, mechanical and thermal properties of the prepared fibers were investigated. The mechanical properties of the co‐PI fibers were improved with the addition of ODA and BIA, and they reached the optimum tensile strength of 2.7 GPa and modulus of 94.3 GPa. Wide‐angle X‐ray diffraction results (WAXD) showed that the co‐PI fibers exhibited highly oriented structure along the fiber direction with low degree of lateral packing orders in the transverse direction. Two‐dimensional small‐angle X‐ray scattering (2D‐SAXS) revealed that the incorporation of ODA resulted in the reduction in radius, length, misorientation, and internal surface roughness of the microvoids in the fibers. Fourier transform infrared (FTIR) results indicated that hydrogen‐bonding formed between the BIA and cyclic imide units effectively strengthened the intermolecular interactions. The co‐PI fibers exhibited excellent thermal and thermal‐oxidative stability, with a 5%‐weight‐loss temperature of 578°C under N2 and 572°C in air. POLYM. ENG. SCI., 55:2615–2625, 2015. © 2015 Society of Plastics Engineers  相似文献   

10.
High oriented isotactic polypropylene prepared by self‐designed two‐stage die drawing apparatus was explored through kinds of methods, including differential scanning calorimetry, two‐dimensional wide‐angle X‐ray diffraction, polarized light microscope, and tensile test. The results showed that there was a great difference between the orientation mechanism and structure evolution of two‐stage solid die drawing process and single‐stage solid die drawing process. All samples would undergo free drawing process after die drawing process. Die drawing and free drawing process were of equal importance to single‐stage die drawing process while die drawing process showed an prominent contribution to the two‐stage die drawing process. Drawing speed showed beneficial influence on die drawing process for both single‐ and two‐stage die drawing process routes. Under the same processing condition, tensile strength and modulus of samples prepared by two‐stage die drawing process were higher than those prepared by single‐stage die drawing process and the maximum value could reach 241.93 MPa and 3.57 GPa, respectively. Moreover, two‐stage die drawing samples showed better dimensional stability than single‐stage die drawing samples especially under low draw rate. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46581.  相似文献   

11.
Polyamide 6 (PA6) gels were prepared by the dissolution of PA6 powder in formic acid with CaCl2 as a complexing agent. The concentration of the polymer was 16% w/v. PA6 fibers were obtained through gel‐spinning, drawing, decomplexation, and heat‐setting processes. The structure and properties of the fibers at different stages were characterized with differential scanning calorimetry, thermogravimetric analysis, X‐ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. The experiment results indicate that the melting transition of the as‐spun fibers obtained by the extrusion of the PA6/CaCl2/HCOOH solution into a coagulation bath through a die disappeared. A porous structure existed in the as‐spun fibers, which led to poor mechanical properties. Compared with the as‐spun fibers, the melting and glass‐transition temperatures of the decomplexed and drawn fibers retained their original values from PA6, the degree of crystallinity increased, the porous structure disappeared, and the mechanical properties were improved. The maximum modulus and tensile strength obtained from the drawn fibers in this study were 32.3 GPa and 530.5 MPa, respectively, at the maximum draw ratio of 10. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4449–4456, 2013  相似文献   

12.
Novel high‐performance copolyimide (co‐PI) fibers containing benzimidazole and benzoxazole ring in the main chain were prepared by a two‐step spinning via the poly(amic acid)s. Effects of the incorporated benzimidazole and benzoxazole units on the micro‐structure and properties of co‐PI fibers were investigated. Fourier transform infrared (FTIR) results indicated that hydrogen bonding is formed in the co‐PI fibers. The co‐PI fibers exhibited discernible crystallization peaks at 14°~15° and 23°~26° (2θ), showing crystalline‐like structure. Moreover, the packing type of benzimidazole‐imide units determined the macromolecules packing of co‐PIs. It was amazedly found that the co‐PI fibers exhibited higher tensile strength and initial modulus than those of corresponding homo‐PI fibers, reaching tensile strength of 2.2–2.6 GPa, initial modulus of 99.1–113.2 GPa. The results of dynamic mechanical analysis (DMA) indicated co‐PI2 fiber had a positive Tg deviation due to the presence of strong intermolecular hydrogen bonding between benzimidazole‐imide and benzoxazole‐imide units, which maybe lead to the effective stress transfer between benzimidazole‐imide units and benzoxazole‐imide units. In addition, the obtained PI fibers exhibited excellent thermal properties with the 10% weight loss temperatures under N2 in the range of 574–585°C. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42001.  相似文献   

13.
The influence of formation temperature on the ultradrawing properties of ultrahigh‐molecular‐weight polyethylene/carbon nanotube (UHMWPE/CNT) fiber specimens is investigated. Gel solutions of UHMWPE/CNT with various CNT contents were gel‐spun at the optimum concentration and temperature but were cooled at varying formation temperatures in order to improve the ultradrawing and tensile properties of the UHMWPE/CNT composite fibers. The achievable draw ratio (Dra) values of UHMWPE/CNT as‐prepared fibers reach a maximum when they are prepared with the optimum CNT content and formation temperature. The Dra value of UHMWPE/CNT as‐prepared fibers produced using the optimum CNT content and formation temperature is about 33% higher than that of UHMWPE as‐prepared fibers produced using the optimum concentration and formation temperature. The percentage crystallinity (Wc) and melting temperature (Tm) of UHMWPE/CNT as‐prepared fiber specimens increase significantly as the formation temperature increases. In contrast, Wc increases but Tm decreases significantly as the CNT content increases. Dynamic mechanical analysis of UHMWPE and UHMWPE/CNT fiber specimens exhibits particularly high α‐transition and low β‐transition, wherein the peak temperatures of α‐transition and β‐transition increase dramatically as the formation temperature increases and/or CNT content decreases. In order to understand these interesting drawing, thermal and dynamic mechanical properties of the UHMWPE and UHMWPE/CNT as‐prepared fiber specimens, birefringence, morphological and tensile studies of as‐prepared and drawn fibers were carried out. Possible mechanisms accounting for these interesting properties are proposed. Copyright © 2010 Society of Chemical Industry  相似文献   

14.
High tensile strength fibers of poly[(R)‐3‐hydroxybutyrate‐co‐(R)‐3‐hydroxyhexanoate] [P(3HB‐co‐3HH)], a type of microbial polyesters, were processed by one‐step and two‐step cold‐drawn method with intermediate annealing. Thermal degradation behaviors were characterized by differential scanning calorimeter and gel permeation chromatography measurements. Thermal analyses were revealed that molecular weights decreased drastically within melting time at a few minute. One‐step cold‐drawn fiber with drawing ratio of 10 showed tensile strength of 281 MPa, while tensile strength of as‐spun fiber was 78 MPa. When two‐step drawing was applied for P(3HB‐co‐3HH) fibers, the tensile strength was led to 420 MPa. Furthermore, the optimization of intermediate annealing condition leads to enhance the tensile strength at 552 MPa of P(3HB‐co‐3HH) fiber. Wide‐angel X‐ray diffraction measurements of these fibers suggest that the fibers with high tensile strength include much amount of the planer‐zigzag conformation (β‐form) as molecular conformation together with 21 helix conformation (α‐form). © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41258.  相似文献   

15.
The structure evolution of commercial fibers with excellent performance is always a hot research topic. In this work, we used samples obtained from different forming stages of industrial production lines with a total draw ratio of 54.5 to explore the structure–property evolution of ultra-high molecular weight polyethylene (UHMWPE) fibers through a combination of differential scanning calorimetry, wide-angle X-ray diffraction, and small angle X-ray scattering methods. The results showed that the preferential orientation of amorphous molecular chain and the crystallinity increased rapidly in predrawing process, but the mechanical properties were basically unchanged, demonstrating that this stage had little effect on mechanical properties of fibers. At first-step drawing, the crystallinity and orientation degree increased from 68% to 81% and 0.88 to 0.97, respectively, accompanied by rapid increase in modulus and tensile strength (29.5 to 878.1 cN/dtex and 4.3 to 21.1 cN/dtex, respectively) and the formation of monoclinic phase and fibrillar crystals also happened at this stage. The content of monoclinic phase with tighter structure was increased during the second-step and third-step drawing, which were crucial for the continuous improving mechanical properties. In addition, the molecular schematic diagram was proposed to describe structural development of UHMWPE fibers during manufacture process.  相似文献   

16.
High‐tension multiannealing (HTMA) was applied to improve the tensile properties of poly(p‐phenylene sulfide) fibers, which was furthermore applied to the fibers produced and improved with the zone‐drawing and zone‐annealing treatments. The HTMA treatment was repeatedly applied to the fibers under the conditions of a 250°C temperature and an applied tension of between 201.0 and 188.0 MPa. As a result, at the 13th treatment the degree of crystallinity increased to 40%. On the other hand, the orientation factor of crystallites increased dramatically to 0.982 during the zone‐drawing treatment, but increased only slightly during the subsequent treatments of zone annealing and HTMA. The finally obtained fiber had a tensile modulus of 10.4 GPa and a tensile strength of 0.73 GPa. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 1569–1576, 2000  相似文献   

17.
A high temperature zone‐drawing method was applied to a nylon 66 microfiber, obtained by using CO2 laser‐thinning, to develop its mechanical properties. The microfiber used for the high temperature zone‐drawing was prepared by winding at 150 m min?1 the microfiber obtained by irradiating the laser at 4.0 W cm?2 to an original fiber with a diameter of 50 μm, and had a diameter of 9.6 μm and a birefringence of 0.019. The high temperature zone‐drawing was carried out in two steps; the first drawing was carried out at a temperature of 230°C at supplying and winding speeds of 0.266 and 0.797 m min?1, the second at 250°C at supplying and winding speeds of 0.266 and 0.425 m min?1, respectively. The diameter of the microfiber decreased, and its birefringence increased stepwise with the processing. The high temperature zone‐drawn microfiber finally obtained had a diameter of 4.2 μm, a birefringence of 0.079, total draw ratio of 4.8, tensile modulus of 12 GPa, and tensile strength of 1.0 GPa. The wide‐angle X‐ray diffraction photograph of the drawn microfiber showed the existence of highly oriented crystallites. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 42–47, 2006  相似文献   

18.
Multi‐hollowed fibers with a hollowness ratio of over 20% were successfully produced using a neck‐drawing technique accompanied by CO2 laser irradiation on unoriented and amorphous polytrimethylene terephthalate (PTT) fibers with diameters of approximately 104 µm. The structure and mechanical properties of the multi‐hollowed fibers were characterized using scanning electron microscopy, wide angle X‐ray diffraction (WAXD), birefringence measurements, and tensile tests. Crystal orientation factors in the direction normal to the (010) and (002) planes, which were obtained from WAXD patterns, were lower in comparison to values obtained in previous studies on fibers that did not feature these hollows [9] because of the development of these internal hollows. The PTT fibers in this study also displayed high toughness, about 465 MPa (3.5 cN/dtex) strength and about 40% elongation, and had excellent elastic recovery (>95%) after 10 stretch cycles. POLYM. ENG. SCI., 56:609–616, 2016. © 2015 Society of Plastics Engineers  相似文献   

19.
超拉伸过程中UHMWPE纤维结构与性能的研究   总被引:1,自引:1,他引:0  
利用密度梯度仪、声速取向仪、Instron材料强力仪、WAXD、DSC等手段 ,对超高相对分子质量聚乙烯 (UHMWPE)纤维在超拉伸过程中的结构和性能进行了测试研究。结果表明 ,不同拉伸倍数的UHMWPE纤维的结晶度、取向度、力学性能和熔融温度随着拉伸倍数的增大而增加 ;DSC图谱上的 Tm4 峰和WAXD分析证实了在超拉伸过程中UHMWPE纤维发生了正交晶相向六方晶相的转变 ,超拉伸后期结晶结构的变化对纤维的力学性能影响很大。  相似文献   

20.
The influence of sepiolite content (1, 2, and 3 wt%) and successive drawing steps on the final properties of polyethylene/sepiolite nanocomposite fibers are reported. Particularly the effects of these variables on crystallinity, fiber macroscopic morphology, and tensile mechanical properties are analyzed applying different experimental techniques: differential scanning calorimetry, wide angle x‐ray diffraction, scanning electronic microscopy, and tensile mechanical characterization. The study evidenced the important role of both sepiolite content and stretching on the crystalline morphology and mechanical properties of the nanocomposites fiber. Both variables favor the appearance of the monoclinic phase during polyethylene crystallization, and produce an increase of crystallinity degree (35 % with drawing steps and 10 % by the sepiolite incorporation in non drawing fiber). This change of crystal morphology influences mechanical properties enhancing with both sepiolite content and drawing steps. Thus, Young Modulus increases 17 times with drawing in pure PE fibers and 1.5 times because sepiolite presence. The strength shows similar behavior, but the elongation at break decreases 14 timed with draw steps and to a half by the sepiolite influence. The final properties of drawing nanocomposite fibers are so acceptable for textile applications and they content particles that enhance their moisture and odors absorptive capacities. POLYM. ENG. SCI., 55:1096–1103, 2015. © 2014 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号