首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
要确保受端电压的稳定性,就要保证有足够的无功补偿。静态无功补偿可以有效降低网损,并提供稳定的无功功率。但在电网系统变得越来越复杂的情况下,静态无功补偿已经很难满足需求,这时,动态无功补偿作为一种更为有效的无功补偿方式应运而生了。  相似文献   

2.
针对电网无功配置不足或过剩将会造成电网电压波动、电网调度运行管控困难、设备利用率低、电网投资浪费、不利于电力系统安全稳定运行等问题。本文从电网工程可行性研究报告的评审角度出发,提出了电网无功补偿装置配置原则,明确了接入电网的基本要求和功率因数的补偿要求,同时在电网工程可行性研究阶段变电站无功补偿配置的设计思路和方法基础上,结合电力系统中无功负荷(损耗)、无功电源等计算过程,对电网工程无功配置设计中普遍存在无功负荷统计值偏大、忽略无功电源提供的无功功率和忽视电容器组投切电压波动及谐波校验等问题进行分析和总结,提出变电站无功补偿选型设计和评审过程中关注的要点,以达到在确保电网安全可靠运行的基础上,经济合理配置无功补偿设备,提高电力系统经济运行水平,节省电网工程建设投资的目的。  相似文献   

3.
低压配网中TSC型动态无功补偿装置的设计与应用   总被引:1,自引:0,他引:1  
文章根据广东省肇庆市端州区配网的实际情况,对现有配网无功补偿装置的特点进行了分析,重点阐述了TSC型动态无功补偿的原理和系统设计,并对该装置的投切方式和保护进行了介绍。最后总结了TSC型动态无功补偿装置在肇庆市的应用。  相似文献   

4.
中低压配电网不平衡无功补偿系统的设计   总被引:1,自引:0,他引:1  
研究中低压配电网优化问题,针对感性负载和负载的不平衡造成电网损耗大、功率因数低等缺欠,传统的补偿装置往往只适用于三相三线制配电网或不能兼顾无功补偿和三相不平衡的校正.提出设计一种既适合三相三线制配电网又适用于三相四线制的中低压配电网不平衡无功补偿系统.运用新型无功补偿算法计算无功补偿量,再利用模糊控制器控制复合开关来实现电容投切.并通过MATLAB仿真证实设计的补偿系统既可以有效的校正三相不平衡又可以对系统无功功率进行补偿,为优化提供了参考.  相似文献   

5.
提出采用交流斩波装置对三相不平衡系统进行动态无功补偿的方案,给出了装置结构,通过仿真验证了交流斩波装置可通过改变占空比来调节输出电压,进而调节容性负载的容量值,实现不平衡负载无功功率的动态调节;采用Matlab软件对交流斩波装置在三相四线制不平衡系统无功补偿中的应用进行了仿真研究,结果表明,交流斩波装置可连续可调地补偿不平衡电流,且不会向电网注入谐波电流。  相似文献   

6.
介绍了EDA9033K智能电力参数采集模块在10 kV高压配电网无功补偿装置中的应用。由该模块完成对功率因数等三相电参数的测量,再由单片机自动实现多级电容器的投切及电网无功功率的补偿。该模块的使用大大简化了无功补偿装置的硬件结构,提高了装置的集成度。  相似文献   

7.
本文介绍了应用GPRS无线通信技术实现的高压无功补偿装置远程监控系统。通过GPRS模块将无功补偿装置的现场运行数据实时的传输到本地的主监控器上,进行显示和处理。实现远程监测电网的运行情况、补偿装置的故障判断,同时本地技术人员也可以对现场的无功补偿控制器进行参数设置、投切控制等操作。  相似文献   

8.
无功与谐波补偿检测的光伏并网仿真研究   总被引:1,自引:0,他引:1  
研究了光伏电源并入配电网后对电能质量的影响.从理论上分析了对光伏并网发电系统进行无功补偿和消除配电网谐波的方法,利用瞬时无功功率理论检测系统无功及谐波电流,将无功和谐波补偿策略与光伏发电控制相结合.仿真结果表明,光伏电源并网能够较好地补偿系统无功和负载谐波,对提高负荷特性和电网的电能质量、减小电网电流谐波有显著的效果.  相似文献   

9.
固定式电容机械投切无功补偿系统存在实时性差、只能分级投切和机械装置动作频繁等缺点;动态无功补偿系统SVC采用TCR和TSC组合方式,可对无功功率进行动态、连续补偿;针对某一具体工程应用,确定了SVC主电路方案和相关技术参数,设计了基于DSP2000系列TMS320F2812的动态无功补偿系统控制装置,详细介绍了控制器的原理及实现技术以及软件功能,给出了系统采样信号、触发信号等理论与实测波形,实验结果表明动态型静止无功补偿装置具有运行可靠、控制精度高、调节时间短及实时性好的优点.  相似文献   

10.
为改善电动汽车充电站接入电网后引起的电压波动、无功不足等电能质量问题,提出了一种对电网进行无功补偿的控制策略。利用晶闸管投切电容器(TSC)无功补偿装置与模糊控制相结合,采用专家经验的方法,通过模糊控制器的双输入量来控制输出量,从而控制TSC的投切。仿真结果表明,通过该控制策略补偿后的电压维持在正常允许范围内,电网中所需的无功功率明显减少,且仿真速度加快。说明电动汽车充电站接入电网后TSC无功补偿的模糊控制控制策略有效、可行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号