首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 109 毫秒
1.
针对阀控电液位置伺服系统未建模摩擦力、参数不确定性和外部随机干扰造成的复合扰动问题, 提出一种基于扩张状态观测器(ESO)的反步滑模控制方法。ESO的设计可以对作动器速度、加速度和复合扰动进行在线估计, 解决工程应用中对以上信号难以测定的问题;基于ESO估计值和位移反馈信号进行反步滑模控制器设计, 通过构造包含反步设计误差、滑模函数和观测器误差的Lyapunov函数, 对所提控制方法进行稳定性证明;为验证所提方法的有效性, 进行了AMESim和MATLAB/Simulink联合仿真, 与PID控制器、传统的反步滑模控制器和基于ESO的滑模控制器的控制效果进行对比, 并对仿真数据进行了分析。研究结果表明:所提方法可以有效抑制系统复合扰动, 位移跟踪精度高, 鲁棒性强。   相似文献   

2.
直/气复合控制导弹具有强干扰、强非线性以及强耦合等特点,传统的姿态控制器难以适用于该种复杂干扰并存的情况,文章提出了基于双环滑模控制的直/气复合控制器。首先采用有限时间收敛趋近律分别构造内外环滑模控制器,并将角速度回路的滑模变量量化为直接力指令,以解决空气舵与姿控发动机之间的耦合问题。接着使用非线性扩张状态观测器估计综合干扰,从而设计控制器补偿侧向喷流干扰及模型不确定性等综合干扰的影响。然后基于李雅普诺夫方法证明了控制系统闭环稳定,分析了干扰补偿对控制器收敛域的影响。最后仿真结果表明,该方法跟踪速度快,动态过程平稳,具有较强的干扰抑制能力,具有很强的鲁棒性。  相似文献   

3.
滑模干扰观测器在低速光电跟踪系统中的应用   总被引:1,自引:1,他引:0  
针对摩擦等非线性干扰因素对光电跟踪伺服系统低速性能的影响,系统设计分为两部分完成.将各种干扰信号等效成控制输入端的等效输入干扰(EID,Equivalent Input Disturbance),针对系统名义模型搭建滑模干扰观测器,利用系统的状态观测误差推导出系统的等效输入干扰,并采用Lyapunov函数推导出该观测器稳定收敛的条件,通过设计增益矩阵与反馈矩阵,调整观测器跟踪系统状态的收敛速度,最终实现抑制系统跟踪过程中的干扰信号;针对系统的动态部分设计了自适应加速度稳定控制器,进一步补偿了干扰估计的不足问题,保证了系统动态跟踪的精度与稳定性,增强了控制系统的鲁棒自适应能力.仿真和实验结果证明了该方法的有效性.  相似文献   

4.
针对摩擦等非线性干扰因素对光电跟踪伺服系统低速性能的影响,系统设计分为两部分完成.将各种干扰信号等效成控制输入端的等效输入干扰(EID,Equivalent Input Disturbance),针对系统名义模型搭建滑模干扰观测器,利用系统的状态观测误差推导出系统的等效输入干扰,并采用Lyapunov函数推导出该观测器稳定收敛的条件,通过设计增益矩阵与反馈矩阵,调整观测器跟踪系统状态的收敛速度,最终实现抑制系统跟踪过程中的干扰信号;针对系统的动态部分设计了自适应加速度稳定控制器,进一步补偿了干扰估计的不足问题,保证了系统动态跟踪的精度与稳定性,增强了控制系统的鲁棒自适应能力.仿真和实验结果证明了该方法的有效性.  相似文献   

5.
考虑飞机电液舵机活塞杆运动速度不易测量的情况,提出一种基于速度观测的容错同步控制策略,解决了双余度电液舵机系统(DREHAS)内泄漏共模故障(IL-CMF)下的位置跟踪控制问题。首先,通过引入2组参考轨迹并对模型进行线性变换,实现舵面位置跟踪与两舵机力输出同步控制解耦;其次,在扩展状态观测器(ESO)中加入故障参数自适应项,设计一种自适应扩展状态观测器(AESO)估计两通道舵机活塞杆速度和扰动,从而克服了故障条件下利用原系统模型设计ESO带来的估计结果不准确问题;最后,基于AESO的估计结果及故障参数在线更新结果,利用反步法设计了一种非线性容错同步控制器。Lyapunov稳定性分析结果表明,该控制方法可确保IL-CMF故障及时变干扰条件下,闭环系统所有信号有界,系统输出满足规定的性能要求。IL-CMF故障及常值干扰条件下,系统跟踪误差渐进收敛于零。仿真实验进一步验证了所提方法的有效性。   相似文献   

6.
考虑参数不确定和外界干扰对姿态控制的影响,开展基于扩张状态观测器(ESO,extended states observer)的可重复使用飞行器姿态控制研究.首先,对飞行器运动模型进行描述,在合理假设条件下,得到面向控制器设计的纵向和横侧向姿态模型;其次,分别针对纵向和横侧向姿态模型设计积分滑模控制器(ISMC,integral sliding mode control);然后,引入ESO对耦合作用、参数不确定及外界干扰进行估计,并在控制器中进行补偿;最后,六自由度仿真结果表明,本研究给出的控制策略能够实现对给定制导指令的稳定跟踪,确保安全再入飞行.  相似文献   

7.
针对电静液作动器系统中存在的匹配干扰及不匹配干扰,基于扩张状态观测器,设计了一种自调节积分鲁棒控制方法。首先设计扩张状态观测器估计系统的匹配不确定性并且进行前馈补偿;然后设计自调节积分鲁棒控制器分别处理系统的不匹配干扰和状态估计误差,实现了电静液作动器的渐近跟踪控制;最后通过仿真验证了该控制方案的有效性。结果表明:相较于传统的PID控制器,该控制器的跟踪误差约为0.2mm,控制精度达到0.4%左右。  相似文献   

8.
针对非合作目标存在对抗性力矩输出情况下的组合体航天器姿态控制系统,提出了一种基于模糊神经网络干扰观测器(Fuzzy Neural Network Disturbance Observer,FNNDO)的非奇异终端滑模(Nonsingular Terminal Sliding Mode,NTSM)有限时间控制策略。首先以服务航天器为基准,建立组合体航天器姿态数学模型,然后针对包含惯量不确定性、目标对抗性力矩等的等效干扰力矩,设计了一种具有自适应能力的FNNDO,可以实现对等效干扰的有效跟踪。在FNNDO的基础上,设计NTSM控制器,利用Lyapunov理论证明闭环系统的有限时间稳定性。最后,仿真实验结果表明了控制策略的有效性和观测器在观测性能上的优越性。  相似文献   

9.
对于电动静液作动器(EHA),传统滑模控制器存在加速度信息难以获取,参数不易整定和控制信号抖振等问题,从而造成控制器很难应用于实际。针对以上问题,利用奇异摄动理论对EHA数学模型进行合理的降阶,从而使控制器设计避免了使用加速度信息。在此基础上,利用降阶模型设计了一种新型非线性变阻尼积分滑模控制器(NSMC),该控制器可根据位置控制误差实现系统阻尼比由欠阻尼到过阻尼的自适应调节,能有效提高位置阶跃调节性能。设计了一种基于滤波器的不确定项估计器对EHA中存在的参数不确定性和外部扰动进行实时估计并补偿。滑模面积分项的引入和不确定项估计器的使用,一方面使控制器中无需使用切换函数,实现了EHA的无抖振滑模控制,另一方面使系统整个动态过程完全表现为滑动模态,从而可根据EHA控制指标直接整定滑模面参数,大大简化了参数整定过程。同时利用Lyapunov稳定性理论对整个闭环系统和滑模面的稳定性进行了详细分析。分别与PI控制器、传统滑模控制器(SMC)和传统变阻尼滑模控制器(DVSMC)进行了详细的仿真分析比较,仿真结果表明NSMC能有效提高EHA位置跟踪性能和增强对参数不确定性和外部扰动的鲁棒性。  相似文献   

10.
高超声速飞行器抗干扰反步滑模控制   总被引:2,自引:1,他引:1  
针对存在参数不确定及外部扰动下的高超声速飞行器轨迹跟踪控制问题,研究了一种基于反步法的抗干扰滑模控制设计方法.将非线性高超声速飞行器动力学模型表达为严反馈形式分步进行设计.采用滑模控制方法进行每步的控制器设计,并提出采用扩展状态观测器(ESO,Extended State Observer)方法实现对参数不确定及外部扰动产生的内外干扰进行估计,继而在控制中补偿.扩展状态观测器能保证对干扰的估计收敛到真值附近的邻域内,从而能够保证较好的补偿效果.通过0.5°附加干扰攻角和25%的气动参数偏差下的非线性高超声速飞行器动力学模型仿真结果验证了该抗干扰滑模控制方案对内外干扰的抑制效果和闭环系统良好的跟踪性能.   相似文献   

11.
电液伺服泵(IEHSP)由于在结构上实现了伺服电机和液压泵共转子、共壳体高度融合,在体积、噪声和效率等方面具有明显优势,具有很好的应用前景。为了提高电液伺服泵的调速性能与抗扰能力,设计了一种新型分数阶滑模控制器(NFOSMC)。首先,由于分数阶微积分理论的引入,控制器为系统提供了更多的控制余度。然后,针对传统滑模控制中存在的抖振问题,通过设计使控制器中直接包含有切换项的分数阶积分项,利用其滤波特性可以有效滤除抖振,实现无抖振滑模控制。同时利用Lyapunov稳定性定理证明了控制器可以保证系统在存在内扰与外扰时能够在有限时间内收敛于平衡点,另外控制器中避免了含有高阶分数阶微分项,扩大了分数阶阶数的取值范围。为了进一步提高抗扰能力,设计了分数阶扰动观测器(FODOB),对系统内扰和外扰实时观测并补偿,有效提高了控制器的响应速度和刚度。最后,分别与PI控制、整数阶滑模控制器(IOSMC)和传统分数阶滑模控制器(CFOSMC)进行了仿真分析比较,结果表明该控制器能够有效改善速度跟踪性能和增强抗扰能力,消抖效果显著。   相似文献   

12.
为了克服电机内部参数变化、齿槽效应、负载扰动以及余度降级等不确定因素对多余度无刷直流电动机位置伺服系统性能的影响,实现高性能的位置伺服控制,提出了基于自抗扰控制器的多余度无刷直流电动机位置伺服系统.该系统通过跟踪微分器为给定位置信号安排了一个过渡过程,解决了系统的快速性与超调之间的矛盾;通过扩张状态观测器将影响输出的系统内外"总扰动"扩展成新的状态变量,实时估计出来并进行动态补偿,提高了系统的抗干扰能力;通过非线性组合实现了"小误差大增益、大误差小增益"的工程经验,提高了控制精度.仿真结果表明:该系统具有良好的动、静态性能,满足了系统的性能要求,且对电机内部参数变化、余度降级、负载扰动等具有很强的鲁棒性.  相似文献   

13.
针对存在模型不确定和外部干扰的可重复使用运载器再入段姿态控制问题,提出了一种基于自适应滑模干扰观测器的递归积分滑模控制方法。首先,基于可重复使用运载器再入段姿态运动模型,建立了面向控制的模型;其次,设计了自适应滑模干扰观测器,以精准估计和补偿由模型不确定和外部干扰构成的复合干扰;然后,基于递归思想设计了一种新型递归积分滑模控制器,利用Lyapunov稳定性理论证明了闭环系统的有限时间稳定性;最后,数值仿真结果验证了该方法具有较强的鲁棒性和较快的收敛速度。  相似文献   

14.
    
针对水下机械手遥操作过程中数学模型及外部干扰引起不确定问题提出了自适应双边控制策略。对主机械手模型参数与外部干扰引起的不确定,设计了基于名义模型的参考自适应阻抗控制律,根据主手力与从手力误差来调节期望模型的参考位置,利用自适应控制律补偿模型不确定性。针对从机械手的不确定性采用径向基函数(RBF)神经网络进行自适应补偿,通过设计滑模变结构控制器与鲁棒自适应控制器消除逼近误差,满足了从机械手对主机械手位置跟踪。设计了李雅普诺夫函数证明跟踪性能与全局稳定性,保证力-位置跟踪的渐进收敛性能。结果表明:整体控制在模型不确定及外部干扰条件下具有很好的力-位置跟踪能力,整体系统具有稳定性和可靠性,并且具有鲁棒性及自适应控制能力。  相似文献   

15.
针对电液负载敏感系统中泵阀控制的耦合问题,提出了一种基于自抗扰算法的解耦控制方法。首先,根据系统原理建立了负载敏感系统的状态空间模型。其次,针对阀控和泵控子系统分别设计了位置自抗扰控制器(ADRC)和压力自抗扰控制器,将2个系统间的动态耦合作用以及外部干扰和不确定性视作总扰动进行估计并给予补偿。最后,基于AMESim和MATLAB联合仿真平台进行了仿真分析。结果表明:所提的控制方法能够消除阀控子系统和泵控子系统的强耦合作用,提高系统的控制精度和鲁棒性。另外,在动态性能和节能效率方面与纯阀控和泵控系统进行对比分析,仿真结果表明:基于自抗扰控制的负载敏感系统的动态性能优于泵控系统,系统能效相对于阀控系统也有较大提升。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号