首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Wax esters of secondary alcohols constitute 18–20% of the cuticular lipid extract ofMelanoplus packardii and 26–31% of the cuticular lipids ofMelanoplus sanguinipes. The total number of carbons in the wax esters range from 37–54 with 41 predominating in both species. The fatty acids ofM. packardii wax esters are 16∶0, 18∶0, 14∶0, 20∶0 and 12∶0 in decreasing quantity. The fatty acids ofM. sanguinipes wax esters are 18∶0, 20∶0, 16∶0 22∶0, 14∶0, 19∶0 and 17∶0 in decreasing quantity. The secondary alcohols from the wax esters ofM. packardii are C25, C23 and C27 in decreasing quantity, and the secondary alcohols of theM. sanguinipes are C23, C25, C21, C27, C24, C22 and C26 in decreasing quantity. Each secondary alcohol consists of two to four isomers with the hydroxyl group located near the center of the chain. Montana Agriculture Experiment Station, Journal Series No. 332.  相似文献   

2.
Judd C. Nevenzel 《Lipids》1970,5(3):308-319
Wax esters occur as a major lipid-type in at least 30 species of marine animals, distributed among 17 orders and 3 phyla. They are of limited usefulness as a chemotaxonomic character, since only in two suborders, the calanoid copepods, Calanoidei, and the toothed whales, Odontoceti, do the wax esters occur in all members so far examined. In bony fishes their occurrence in muscle correlates better with mesopelagic habitat and vertical migration patterns than with taxonomy. Homologs with 21 to 44 total carbon atoms have been reported, but the usual range for the wax esters in copepods and fish is C30–C42. In fishes the muscle wax esters contain predominantly one and two double bonds per molecule, while in roe lipids up to 65% of the homologs contain three or more double bonds. The component alcohols are saturated and monounsaturated, with 16∶0 and 18∶1 as the usual major constituents. The fatty acids are more diverse, but 18∶1 is most often the main component, and 16∶1 and 20∶1 are frequent major constituents; polyunsaturated acids make up 1–12% in fish muscle and whale oils and up to 45% in fish roe wax esters. Possible functions of the wax esters are for buoyancy, as energy reserves and for thermal insulation. In vitro, various tissues of marine bony fishes synthesize wax esters from long chain alcohols and fatty acids, without activation. A competing pathway for the long chain alcohols in vivo is their catabolic oxidation to the corresponding fatty acids. The key to the accumulation of wax esters is to be sought in the metabolism of the long chain alcohols, their biosynthesis and esterification vs. their catabolism. Presented at the 60th AOCS Annual Meeting, San Francisco, April 1969, as part of a Symposium on Natural Waxes.  相似文献   

3.
Two unusual lipid classes were detected by thin-layer chromatography in the neutral lipids derived from goat cauda-epididymal sperm plasma membrane. The lipids were identified as wax esters and 1-O-alkyl-2,3-diacylglycerols based on chromatographic properties, identity of their hydrolysis products, and infrared/1H nuclear magnetic resonance spectral evidence. The membrane containedca. 3 and 5 μg/mg protein of wax esters and alkyldiacylglycerols, respectively. The relative proportions of wax esters and alkyldiacylglycerols in the total neutral lipids were 1.5% and 2.4%, respectively. The lipids contained fatty acids with chain lengths of C14 to C22. The major fatty acids of the wax esters were 14∶0, 16∶0, 16∶1ω7, 18∶0 and 18∶1ω9. The fatty acids in alkyldiacylglycerol were 16∶0, 18∶0, 22∶5ω3 and 22∶6ω3. Alkyldiacylglycerol was particularly rich in docosahexaenoic acid 22∶6ω3) representing 30% of the total fatty acids. The alcohols of wax ester were all saturated with C20–C29 carbon chains. The deacylated products derived from alkyldiacylglycerols were identified as hexadecyl, octadecyl and octadec-9′-enyl glycerol ethers.  相似文献   

4.
Lipids were extracted from the mandibular fat body (jaw), the fatty forehead (melon), and the dorsal blubber of a Pacific beaked whale (Berardius bairdi) and separated into lipid classes by preparative thin layer chromatography. The head fats were mixtures of wax esters and triglycerides with a very small amount of diacyl glyceryl ether. The blubber fat contained 97% was ester and 3% triglyceride. Gas liquid chromatography (GLC) of the intact lipid classes indicated an unusually low C26–C30 range for most of the jaw and melon wax esters compared to the more normal C32–C40 molecules found in the blubber. Distinctive lower molecular weight C24–C40 triglycerides occurred in the head fats vs. the usual C44–C58 range in the blubber. Most diacyl glyceryl ethers were in the C35–C46 range, below the molecular weight of hexadecyldipalmitoyl glyceryl ether (C48). GLC of the derived fatty acid methyl esters showed that the lower molecular weight neutral lipids in the head fats were due to high levels of iso-10∶0, n−10∶0, iso-11∶0, iso-12∶0, n−12∶0, and iso-13∶0 acids. The wax ester fatty alcohols and the alkoxy chains of the glyceryl ethers were mostly the C14–C20 chain lengths commonly observed in marine organisms. The distinctive medium chain neutral lipids in the jaw and melon fats of this whale may be related to the postulated acoustical role of these tissues in echolocation.  相似文献   

5.
Fatty acyl groups (16∶1 and 16∶0) liberated from purified sulfoquinovosyl diacylglycerols produced by the unicellular marine microalga,Heterosigma carterae (formerlyH. akashiwo), were converted to either the corresponding alcohols or methyl esters. Nicotinate derivatives of the alcohols were examined by combined gas chromatography/mass spectrometry, and the methyl esters were examined by nuclear magnetic resonance (NMR) spectroscopy after separation by high-performance liquid chromatography. Three different hexadecenoyl fatty acyl groups were identified, one of which wascis 13-hexadecenoyl (16∶1n−3). Both the configuration and the n−3 position of the double bond in thecis 13-hexadecenoyl moiety were unequivocally established by NMR analysis of the corresponding methyl ester. The nicotinate derived from the alcohol of the 16∶1n−3 fatty acyl moiety gave a characteristic fragmentation series in the electron impact msss spectrum which, by careful interpretation, was consistent with, but not unambiguous for, the assigned location of the double bond. Tandem mass spectrometry experiments on a sulfoquinovosyl monoacylglycerol containing thecis 13-hexadecenoyl group in thesn-2 position, using negative-ion liquid secondary ion mass spectrometry, also gave a fragmentation pattern which was consistent with the positional assignment of the double bond.  相似文献   

6.
The positions of double bond in the monounsaturated C15−C32 fatty acids ofMycobacterium tuberculosis H37Ra were established by gas chromatography/mass spectrometry of the ozonized esters and their pyrrolidide derivatives. The monounsaturated C15−C21 fatty acids had the double bond primarily at the Δ9 position while the monounsaturated longer chain fatty acids (C22−C32) had the double bond in several positions. Many of the latter acids, especially the odd-numbered series, were very complex isomeric mixtures. Quantitation showed the most abundant even-numbered long chain fatty acid isomers to be as follow: C22, Δ4; C24, Δ5; C26, Δ7 and Δ9; C28, Δ9; C30, Δ11 and Δ13; C32, Δ13 and Δ15.  相似文献   

7.
Saturated, monoenoic and dienoic wax esters, C26−C40, have been synthesized from even-numbered fatty alcohols and acids. In homologous series of saturated esters, the increments of melting points follow a regular trend except for those esters which have an acid moiety two carbon atoms shorter than the alcohol moiety. These wax esters have melting points higher than interpolation would predict. Monoenoic wax esters with the double bond in the alcohol chain have melting points about 10 C higher than their isomers with the double bond in the acid chain.  相似文献   

8.
Chemical structure of long-chain esters from “sansa” olive oil   总被引:1,自引:0,他引:1  
The major objective of this study was to determine the chemical structure of long-chain esters present in lower-grade olive oil. The classes of esters composing the hexanediethyl ether (99∶1) extract of the wax fraction from a pomace olive oil were: (i) esters of oleic acid with C1−C6 alcohols, (ii) esters of oleic acid with long-chain aliphatic alcohols in the range C22−C28 and (iii) benzyl alcohol esters of the very long-chain saturated fatty acids C26 and C28. The analysis and the structure assignments were carried out by gas chromatography coupled with mass spectrometry and by comparison with synthetic authentic model compounds. This work provided precise data on the chemical nature of the wax esters present in olive oil and should represent a means to detect adulteration of higher-grade olive oil with less expensive pomace olive oil and seed oils.  相似文献   

9.
Open-tubular gas chromatography was carried out on fatty acids and alcohols obtained from wax esters of the orange roughy,Hoplostethus atlanticus, caught at sea off New Zealand. The major (above 5%) components were 16∶1(n−7), 18∶1(n−9) and (n−7), 20∶1(n−9) and (n−7), and 22∶1(n−11, n−13) as fatty acids, and 16∶0, 18∶0, 18∶1(n−9), 20∶1(n−9) and (n−7), and 22∶1(n−11, n−13) as fatty alcohols. The total percentages of the minor components were 10% in the acids and 26% in the alcohols. The 22∶1/20∶1 ratio of the fatty alcohols obtained in this study was less than 1.0, although the ratio for the Atlantic orange roughy has been reported as being greater than 1.0. The contents of polyenes were as low as 2.48% in the acids and 0.95% in the alcohols, but their compositions showed some specific features. The percentages of the C16−C22 dienes in the total polyenes were remarkably high, 57.7% of these acids and 53.1% of these alcohols. The most important dienes were 18∶2(n−6) in the acids and 20∶2(n−6) in the alcohols.  相似文献   

10.
Separation of sterol esters from wax esters in the lipids of vernix caseosa and adult human skin surface was accomplished by column chromatography on MgO. The fatty acids of the sterol esters and wax esters of both samples were separated into saturates and monoenes, and examined in detail by gas liquid chromatography (GLC). The saturated fatty acids of the wax esters of vernix caseosa and of adult human skin surface were remarkably similar. They ranged in chain length from at least C11 to C30, six skeletal types being present: straight even, straight odd, iso, anteiso, other monomethyl branched and dimethyl branched. A large number of patterns of monoenes were observed, each pattern consisting of desaturation of a specific chain at Δ6 or Δ9 plus its extension or degradation products. The mole per cent of the total Δ6 and Δ9 patterns of wax ester fatty acid monoenes of vernix caseosa were 87% and 12%, respectively, and 98% and 1%, respectively, for adult human skin surface lipid. The sterol ester fatty acids of vernix caseosa were much different from those of adult human skin surface: vernix caseosa saturates were largely branched and of lengths greater than C18, whereas the saturates of adult human surface lipid resembled the wax ester fatty acids. Of the vernix caseosa monoene patterns, the mole per cent was 30% Δ6 and 70% Δ9, whereas of the adult human skin surface sterol ester fatty acids 89% were Δ6 and 11% Δ9. Chain extension was particularly pronounced in the sterol ester fatty acid monoenes of vernix caseosa amounting to 7–8 C2 units in some cases. The fatty acids of the sterol esters of both vernix caseosa and adult human skin surface appear to be derived from the sebaceous gland and from the keratinizing epidermis, but those of the wax esters are from the sebaceous glands only.  相似文献   

11.
The total lipids of eleven species of Myctophids caught at depths between 20 and 700 m in the northern Pacific Ocean were analyzed using silicic acid column chromatography (lipid classes) and capillary gas chromatography (fatty acid and fatty alcohol composition). The major components in the lipid classes were triacylglycerols or wax esters; triacylglycerols were the dominant acyl neutral lipids (68.1–96.1%) in eight species, and wax esters were found as the dominant lipid (85.5–87.9%) in three species. The major fatty acids and alcohols contained in the was esters of the three fishes were 18:1n–9, 20:1n–9, 20:1n–11, and 22:1n–11 for fatty acids, and 16:0, 18:1, 20:1, and 22:1 for fatty alcohols. Fatty acids in the triacylglycerols ranging from C14 to C22 were predominantly of even chain length. The major components were 16:0, 16:1n–7, 18:1n–9, 20:1n–11, 22:1n–11, 20:5n–3 (icosapentaenoic acid), and 22:6n–3 (docosahexaenoic acid). In both the triacylglycerols and the wax esters, the major fatty components were monoenoic acids and alcohols. It is suggested from the lipid chemistry of the Myctophids that they may prey on the same organisms as the certain pelagic fishes such as saury and herring, because the large quantities of monoenoic fatty acids are similar to those of saury, herring, and sprats whose lipids originate from their prey organisms such as zooplanktons which are rich in monoenoic wax esters.  相似文献   

12.
Unsaturated fatty acids of mycobacteria   总被引:4,自引:0,他引:4  
The double bond locations have been determined for the mono-unsaturated fatty acids, C14 to C26 ofM. smegmatis andM. bovis BCG. The 14∶1 and 16∶1 fatty acids fromM. smegmatis are principally Δ10, while the 17∶1, 18∶1 and 19∶1 fatty acids from both organisms are Δ9. In the case ofM. smegmatis, the 20∶1, 22∶1 and 24∶1 fatty acids are principally Δ11, Δ13 and Δ15, respectively, while the 22∶1, 24∶1 and 26∶1 fatty acids of BCG are principally Δ13, Δ15 and Δ17, respectively.  相似文献   

13.
Marine fish have an absolute dietary requirement for C20 and C22 highly unsaturated fatty acids. Previous studies using cultured cell lines indicated that underlying this requirement in marine fish was either a deficiency in fatty acyl Δ5 desaturase or C18–20 elongase activity. Recent research in turbot cells found low C18–20 elongase but high Δ5 desaturase activity. In the present study, the fatty acid desaturase/elongase pathway was investigated in a cell line (SAF-1) from another carnivorous marine fish, sea bream. The metabolic conversions of a range of radiolabeled polyunsaturated fatty acids that comprised the direct substrates for Δ6 desaturase ([1-14C]18∶2n−6 and [1-14C]18∶3n−3), C18–20 elongase ([U-14C]18∶4n−3), Δ5 desaturase ([1-14C]20∶3n−6 and [1-14C]20∶5n−3), and C20–22 elongase ([1-14C]20∶4n−6 and [1-14C]20∶5n−3) were utilized. The results showed that fatty acyl Δ6 desaturase in SAF-1 cells was highly active and that C18–20 elongase and C20–22 elongase activities were substantial. A deficiency in the desaturation/elongation pathway was clearly identified at the level of the fatty acyl Δ5 desaturase, which was very low, particularly with 20∶4n−3 as substrate. In comparison, the apparent activities of Δ6 desaturase, C18–20 elongase, and C20–22 elongase were approximately 94-, 27-, and 16-fold greater than that for Δ5 desaturase toward their respective n−3 polyunsaturated fatty acid substrates. The evidence obtained in the SAF-1 cell line is consistent with the dietary requirement for C20 and C22 highly unsaturated fatty acids in the marine fish the sea bream, being primarily due to a deficiency in fatty acid Δ5 desaturase activity.  相似文献   

14.
Ackman RG  Castell JD 《Lipids》1966,1(5):341-348
Monoethylenic fatty acids from herring oil were concentrated by chromatography by chromatography on silver nitratesilicic acid columns. Examination of consecutive fractions by open tubular gas chromatography confirmed the preferential elution of longer chain length esters and of esters within one chain length with the double bond closer to the terminal methyl group. Isomeric monoethylenic fatty acids with double bonds in the positions closer to the carboxyl group than the approximate midpoint of the even-numbered fatty acid chains could not be adequately separated by gas chromatography and were determined by ozonolysis. The isomers observed are consistent with primary formation from saturated acids through the action of an enzyme specifically removing hydrogen atoms in positions Δ9 and Δ10 relative to the carboxyl group. Chain extension of particular monoethylenic isomers by two carbon atoms in the C20 and longer chain lengths is apparently influenced by the position of the double bond. This work was carried out in partial fulfillment of MSc requirements at Dalhousie University.  相似文献   

15.
The jaw fat of the Atlantic bottlenose dolphin (Tursiops truncatus) contains unusual wax esters which can be separated into short chain (<C24) and long chain (>C24) fractions by thin layer chromatography. The short chain wax esters (28 wt. %) have been characterized as a 72∶24∶4 mixture of isovaleroyl, isobutoryl, and 2-methylbutyrol, esters of C14–C18 n- and iso-alcohols. The intact <C24 esters have been resolved into individual molecular species by gas liquid chromatography on open-tubular polyester columns. The long chain wax esters (12 wt. %) contain C10–C22 n- and iso-acids esterified to the same C14–C18 n- and iso-alcohols. Gas liquid chromatography of the intact, hydrogenated >C24 esters on a short JXR column has characterized them according to carbon number and the number of methyl branches they contain.  相似文献   

16.
The fatty acids and nonsaponifiable lipids ofEimeria tenella oocysts were analyzed by gas liquid chromatography and combined gas liquid chromatographymass spectrometry. The fatty acids detected were identified as C14∶0, C16∶0, C16∶1, C18∶0, C18∶1, and C18∶2. Though the wt of the fatty acid fraction decreased during sporulation from 91 μg per 106 oocysts to 47 μg per 106 oocysts, the relative amounts of these fatty acids did not change appreciably. The nonsaponifiable lipids ofE. tenella consisted of cholesterol and unbranched primary alcohols of 22, 24, 26, 28, 30, and 32 carbons. Mass fragmentography demonstrated that each species of alcohol consisted of saturated and monounsaturated derivatives. Trimethylsilyl ethers of fatty alcohols were found to offer several important advantages over free alcohols for mass spectrometric characterization. Before sporulation, most fatty alcohols were in the oocyst wall. During sporulation, the wt of the nonsaponifiable lipids increased from 16 μg per 106 oocysts of 44 μg per 106 oocysts due largely to synthesis of C24 and C26 alcohols. The newly synthesized fatty alcohols were not deposited in the oocyst wall.  相似文献   

17.
S. N. Hooper  R. G. Ackman 《Lipids》1971,6(5):341-346
Trans-6-hexadecenoic acid was found in polar lipids, triglycerides, was esters and diacylglyceryl ethers of the sea anemoneMetridium dianthus from Passamaquoddy Bay. The corresponding alcomaquoddy Bay. The corresponding alcohol also apparently occurs in the wax esters of this species. The long-chain (C20, C22) monoethylenic alcohols reported for other species of sea anemones from neighboring waters were absent and the major alcohol and glyceryl ether chain both had 16∶0 structures. The isomers of C18 and C20 monoethylenic fatty acids in polar lipids and triglycerides were unusual in their high proportion of theω 7 isomer. These two lipids also contained higher proportion of the polyunsaturated fatty acids than the others.  相似文献   

18.
A two-step method was developed for the preparation of food-grade wax. The first step involved the solventdefatting of crude wax, which gave a dark brown, dry, powdered wax with a m.p. of 75–79°C. The major impurity in the defatted wax was the dark brown resinous matter. In the second step, the resinous matter was removed by bleaching with sodium borohydride in isopropanol. This step yielded a pale yellow, odorless wax with purity higher than 99% and with a m.p. of 80–83°C. The resinous matter was a mixture of aliphatic aldehydes, fatty alcohols, and FA. High-temperature GC analysis of the purified rice bran wax indicated that it contained 11 major and 9 minor types of saturated wax esters. The major and minor peaks contained C44–C64 and C45–C59 wax esters, respectively. Rice bran wax was mainly a mixture of saturated esters of C22 and C24 FA and C24 to C40 aliphatic alcohols, with C24 and C30 being the predominant FA and fatty alcohol, respectively. The alcohol portion of the wax esters also contained small amounts of branched and odd carbon number fatty alcohols.  相似文献   

19.
Nicolaides N  Ansari MN 《Lipids》1968,3(5):403-410
The fatty acids of rat skin surface lipids comprise four main skeletal types of chains which occur both as saturates and monoenes and range from C12 to C38: straight even, straight odd, iso and anteiso (the latter two identified by GC retention data only). Two unidentified series of branched monoenes also occur in trace amounts. Reductive ozonolysis of monoenes reveals two characteristic double-bond position patterns, one for the straight even chain series and the other for the straight odd chain series. The straight even chain pattern comprises four series, of which ω7 ≫ω9>ω5>ω11; the straight odd chain series in contrast shows a large number of ω series with irregular distribution. The biosynthesis of the even chain fatty acid monoenes can be thought of as occurring in two stages: synthesis of 14∶Δ9, 16∶Δ9, 18∶Δ9 and 20∶Δ9, with 16∶Δ9 predominating; elongation of these chains mostly by 1, 2, or 3 C2 units but up to the unusually long lengths by 11 C2 units. For the formation of the former, two schemes by known pathways are proposed. Iso and anteiso chains which are nearly all saturated comprised 1/3 the total fatty acids. Special terms and abbreviations: Normal even=a straight chain with an even number of carbon atoms, normal odd=a straight chain with an odd number of carbon atoms, ω=terminal carbon atom, iso=a straight chain with a methyl group at the ω−1 position, anteiso=a straight chain with a methyl group at the w−2 position, Δn=a double bond between the nth and the (n+1)th carbon atom from the carbonyl group of the fatty acid or ester, ωn=a double bond between the ω∩nth and the ω-(n−1)th carbon atom where n is an integer, aldester=aldehyde methyl ester, Me=methyl, GLC=gas-liquid chromatography, TLC=thin-layer chromatography.  相似文献   

20.
Wolff RL 《Lipids》2002,37(8):811-816
In the present study, we investigated the alkenyl chains from sheep heart plasmalogens (1-O-alk-1′-enyl-2-acyl glycerophospholipids) after their conversion into trimethylene dioxyalkanyl (TMDOA) derivatives. Particular attention was given to monounsaturated alkenyl chains (C18 mainly). For this purpose, a combination of silver ion TLC and GLC on highly polar, very long capillary columns was applied to TMDOA derivatives. Approximately 30 different alkenyl chains could be separated, and the main observation was that the component previously reported as a cis-9 18∶1 alkenyl chain in plasmalogens embraces in fact a wide range of trans and cis isomers, in amounts equal to 7.9 and 5.6%, respectively, of total alkenyl chains. Concerning the trans-monoenoate fraction, isomers with their ethylenic bond spanning from Δ6–Δ8 to Δ16 were tentatively identified on the basis of their distribution profile, which was similar to that of trans-18∶1 acids prepared and isolated from sheep adipose tissue. The main trans-monoenoic C18 alkenyl chain in sheep heart plasmalogens would thus have its double bond in position 11, which seems logical, as alkenyl chains are derived from the corresponding alcohols, themselves issued from the corresponding FA, and in this particular case, vaccenic (trans-11 18∶1) acid. cis-Monoenoic C18 alkenyl chains also appear more complex than realized earlier, showing in particular isomers with their ethylenic bond farther than the Δ9 position, in addition to the main isomer derived from oleic acid. Several trans-16∶1 alkenyl chains could be observed (totaling ca. 1%), but cis-16∶1 isomers were present in trace amounts only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号