首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most G protein-coupled receptors are desensitized by a uniform two-step mechanism: phosphorylation followed by arrestin binding and internalization. In this study we explored the time-, ligand-, and concentration dependence of alpha2-adrenoceptor internalization in human embryonal kidney (HEK-293) cells expressing alpha2A- and alpha2B-adrenoceptors. We also explored the relationship between ligand-induced receptor internalization and agonist efficacy, determined with a [35S]GTPgammaS binding assay. The results showed rapid dose-dependent internalization of both alpha2A- and alpha2B-receptors; the extent of internalization was directly proportional to agonist efficacy. The agonist UK 14,304 had a subtype-specific high efficacy at alpha2A-AR and dexmedetomidine at alpha2B-AR. Agonist-induced [35S]GTPgammaS binding was totally blocked by pretreatment with pertussis toxin (PTX) for both receptor subtypes, while only about 50% of the internalization was blocked by PTX. The results indicate that the extent of internalization of alpha2A-AR and alpha2B-AR is proportional to agonist efficacy, but only partly dependent on Gi protein coupling.  相似文献   

2.
The function and distribution of alpha1-adrenergic receptor (AR) subtypes in prostate cancer cells is well characterized. Previous studies have used RNA localization or low-avidity antibodies in tissue or cell lines to determine the alpha1-AR subtype and suggested that the alpha1A-AR is dominant. Two androgen-insensitive, human metastatic cancer cell lines DU145 and PC3 were used as well as the mouse TRAMP C1-C3 primary and clonal cell lines. The density of alpha1-ARs was determined by saturation binding and the distribution of the different alpha1-AR subtypes was examined by competition-binding experiments. In contrast to previous studies, the major alpha1-AR subtype in DU145, PC3 and all of the TRAMP cell lines is the alpha1B-AR. DU145 cells contained 100% of the alpha1B-AR subtype, whereas PC3 cells were composed of 21% alpha1 A-AR and 79% alpha1B-AR. TRAMP cell lines contained between 66% and 79% of the alpha1B-AR with minor fractions of the other two subtypes. Faster doubling time in the TRAMP cell lines correlated with decreasing alpha 1B-AR and increasing alpha1 A- and alpha1D-AR densities. Transfection with EGFP-tagged alpha1B-ARs revealed that localization was mainly intracellular, but the majority of the receptors translocated to the cell surface after extended preincubation (18 hr) with either agonist or antagonist. Localization was confirmed by ligand-binding studies and inositol phosphate assays where prolonged preincubation with either agonist and/or antagonist increased the density and function of alpha 1-ARs, suggesting that the native receptors were mostly intracellular and nonfunctional. Our studies indicate that alpha1B-ARs are the major alpha1-AR subtype expressed in DU145, PC3, and all TRAMP cell lines, but most of the receptor is localized in intracellular compartments in a nonfunctional state, which can be rescued upon prolonged incubation with any ligand.  相似文献   

3.
The third intracellular (3i) loops of the alpha 2A- and alpha 2B-adrenergic receptor (AR) subtypes are critical for retention of these receptors at the basolateral surface of polarized Madin-Darby canine kidney (MDCKII) cells at steady state. The third intracellular loops of the alpha 2A, alpha 2B, and alpha 2C-AR subtypes interact with spinophilin, a multidomain protein that, like the three alpha 2-AR subtypes, is enriched at the basolateral surface of MDCKII cells. The present studies provide evidence that alpha 2-AR interaction with spinophilin contributes to cell surface stabilization of the receptor. We exploited the unique targeting profile of the alpha 2B-AR subtype in MDCKII cells: random delivery to apical and basolateral surfaces with rapid (t(1/2) < or = 60 min) apical versus slower (t(1/2) = 10-12 h) basolateral turnover. Apical delivery of a spinophilin subdomain containing the alpha 2-AR-interacting region (Sp151-483) by fusion with apically targeted p75NTR extended the half-life of alpha 2B-AR at the apical surface to approximately 3.6 h and eliminated the rapid phase (0-60 min) of alpha 2B-AR turnover on that surface. Furthermore, we examined alpha 2B-AR turnover at the surface of mouse embryo fibroblasts derived from wild type (Sp+/+) or spinophilin knock-out (Sp-/-) mice. Two independent experimental approaches demonstrated that agonist-evoked internalization of HA-alpha 2B-AR was accelerated in mouse embryo fibroblasts derived from Sp-/- mice. These findings are consistent with the interpretation that endogenous spinophilin contributes to the stabilization of alpha 2B-AR and presumably all three alpha2-AR subtypes at the surface of target cells and may act as a scaffold that could link alpha 2-ARs to proteins interacting with spinophilin via other domains.  相似文献   

4.
B Lei  Y Zhang  C Han 《Life sciences》2001,69(3):301-308
The norepinephrine (NE)-induced regulation of alpha1-adrenoceptors (ARs) expression in human embryonic kidney (HEK) 293 cells stably expressing cloned alpha1-AR subtypes with similar receptor densities was investigated. In the presence of 10 microM propranolol, the treatment of cells with 10 microM NE for 4-72 h down-regulated alpha1A- and alpha1D-AR. but increased alpha1B-AR expression in a time-dependent manner. The down-regulation of alpha1A-AR reached maximum of 40.3 +/- 14.7 % at 48h. The down-regulation of alpha1D-AR reached maximum of 51.3 +/- 3.7% at 24h. With the stimulation of NE, alpha1B-AR density was increased maximally by 112.4 +/- 43.4% at 48h. The protein kinase C (PKC) inhibitor calphostin C or R0-31-8220 abolished the NE-induced down-regulation of alpha1A- and alpha1D-AR, but showed no effect on the up-regulation of alpha1B-AR. The PKC agonist PMA not only mimicked the NE-induced down-regulation of alpha1A- and alpha1D-AR, but also induced a down-regulation of alpha1B-AR. The endoplasmic reticulum Ca2+-ATPase inhibitor cyclopiazonic acid (CPA) or thapsigargin, or the calcium chelator BAPTA/AM did not affect the down-regulation of alpha1A-AR, but inhibited the up-regulation of alpha1B-AR induced by NE. Calmodulin antagonist W-7. tyrosine kinase inhibitor genistein or tyrphostin A25 had no effect on NE-induced up-regulation of alpha1B-AR. The results suggest that three alpha1-AR subtypes are differently regulated by sustained NE stimulation with different signal transduction pathways.  相似文献   

5.
Cells of the PC12 rat pheochromocytoma cell line acquire characteristics of sympathetic neurons under appropriate treatment. Stably transfected PC12 cells expressing individual alpha2-adrenergic receptor (alpha2-AR) subtypes were used to assess the role of alpha2-ARs in neuronal differentiation and to characterise the signalling pathways activated by the alpha2-AR agonist epinephrine in these cells. The effects of alpha2-AR activation were compared with the differentiating action and the signalling mechanisms of nerve growth factor (NGF). Epinephrine induced neuronal differentiation of PC12alpha2 cells through alpha2-AR activation in a subtype-dependent manner, internalization of all human alpha2-AR subtypes, and activation of mitogen-activated protein kinase (MAPK) and the serine-threonine protein kinase Akt. Epinephrine and NGF showed synergism in their differentiating effects. The MAPK kinase (MEK-1) inhibitor PD 98059 abolished the differentiating effect of epinephrine indicating that the differentiation is dependent on MAPK activation. Activating protein-1 (AP-1) DNA-binding activity was increased after epinephrine treatment in all three PC12alpha2 subtype clones. Evaluation of the potential physiological consequences of these findings requires further studies on endogenously expressed alpha2-ARs in neuronal cells.  相似文献   

6.
Nicotinic acid (niacin) has been widely used as a favorable lipid-lowering drug for several decades, and the orphan G protein-coupled receptor GPR109A has been identified to be a receptor for niacin. Mechanistic investigations have shown that as a Gi-coupled receptor, GPR109A inhibits adenylate cyclase activity upon niacin activation, thereby inhibiting free fatty acid liberation. However, the underlying molecular mechanisms that regulate signaling and internalization of GPR109A remain largely unknown. To further characterize GPR109A internalization, we made a construct to express GPR109A fused with enhanced green fluorescent protein (EGFP) at its carboxyl-terminal end. In stable GPR109A-EGFP-expressing HEK-293 cells, GPR109A-EGFP was mainly localized at the plasma membrane and was rapidly internalized in a dose- and time-dependent manner upon agonist stimulation. GPR109A internalization was completely blocked by hypertonic sucrose, indicating that GPR109A internalizes via the clathrin-coated pit pathway. Further investigation demonstrated that internalized GPR109A was recycled to the cell surface after the removal of agonist, and recycling of the internalized receptors was not blocked by treatment with acidotropic agents, NH4Cl and monensin. Pertussis toxin pretreatment not only inhibited forskolin-induced cAMP accumulation and intracellular Ca2+ mobilization; it also significantly attenuated agonist-promoted GPR109A internalization. Moreover, RNA interference experiments showed that knockdown of GRK2 (G protein-coupled receptor kinase 2) and arrestin3 expression significantly impaired receptor internalization. Taken together, these results indicate that the agonist-induced internalization of GPR109A receptors is regulated by GRK2 and arrestin3 in a pertussis toxin-sensitive manner and that internalized receptor recycling is independent of endosomal acidification.  相似文献   

7.
Many membrane-bound neurotransmitter receptors are known to be internalized by exposure to agonist. This agonist-induced receptor internalization is considered to play important roles in receptor-mediated signaling. Here we investigated the internalization of GAR-3, a Caenorhabditis elegans muscarinic acetylcholine receptor, using cultured mammalian cells. When Chinese hamster ovary cells stably expressing GAR-3 were treated with carbachol, GAR-3 was internalized in a dose- and time-dependent manner. Approximately 60% of the cell surface receptor was internalized by exposure to 1 mM carbachol for 1 h. Carbachol-induced GAR-3 internalization was suppressed by treatment with hypertonic sucrose, which blocks the formation of clathrin-coated pits. Overexpression of a dominant-negative dynamin mutant (DynK44A), but not of a dominant-negative β-arrestin mutant (Arr319–418), substantially inhibited carbachol-induced internalization of GAR-3. Thus, these data suggest that GAR-3 undergoes agonist-induced internalization via a clathrin- and dynamin-dependent but β-arrestin-independent pathway. Depletion of Ca2+ by simultaneous treatment of the cells with BAPTA/AM (Ca2+ mobilization blocker) and EGTA (Ca2+ influx blocker) almost completely blocked agonist-induced GAR-3 internalization. Moreover, treatment of the cells with the Ca2+ ionophore A23187 led to GAR-3 internalization in the absence of agonist. These results indicate that Ca2+ plays a critical role in GAR-3 internalization. We tested whether the third intracellular (i3) loop of GAR-3 is involved in agonist-stimulated receptor internalization. A GAR-3 deletion mutant lacking a large central portion of the i3 loop exhibited an internalization pattern comparable to that of the wild type, suggesting that the central i3 loop is not required for the internalization of GAR-3.  相似文献   

8.
Tolerance develops rapidly to cannabis, cannabinoids, and related drugs acting at the CB1 cannabinoid receptor. However, little is known about what happens to the receptor as tolerance is developing. In this study, we have found that CB1 receptors are rapidly internalized following agonist binding and receptor activation. Efficacious cannabinoid agonists (WIN 55,212-2, CP 55,940, and HU 210) caused rapid internalization. Methanandamide (an analogue of an endogenous cannabinoid, anandamide) was less effective, causing internalization only at high concentration, whereas delta9-tetrahydrocannabinol caused little internalization, even at 3 microM. CB1 internalized via clathrin-coated pits as sequestration was inhibited by hypertonic sucrose. Internalization did not require activated G protein alpha(i), alpha(o), or alpha(s) subunits. A region of the extreme carboxy terminus of the receptor was necessary for internalization, as a mutant CB1 receptor lacking the last 14 residues did not internalize, whereas a mutant lacking the last 10 residues did. Steps involved in the recycling of sequestered receptor were also investigated. Recovery of CB1 to the cell surface after short (20 min) but not long (90 min) agonist treatment was independent of new protein synthesis. Recycling also required endosomal acidification and dephosphorylation. These results show that CB1 receptor trafficking is dynamically regulated by cannabimimetic drugs.  相似文献   

9.
The signaling activity of several chemokine receptors, including CC chemokine receptor 5 (CCR5), is in part controlled by their internalization, recycling, and/or degradation. For CCR5, agonists such as the chemokine CCL5 induce internalization into early endosomes containing the transferrin receptor, a marker for clathrin-dependent endocytosis, but it has been suggested that CCR5 may also follow clathrin-independent routes of internalization. Here, we present a detailed analysis of the role of clathrin in chemokine-induced CCR5 internalization. Using CCR5-transfected cell lines, immunofluorescence, and electron microscopy, we demonstrate that CCL5 causes the rapid redistribution of scattered cell surface CCR5 into large clusters that are associated with flat clathrin lattices. Invaginated clathrin-coated pits could be seen at the edge of these lattices and, in CCL5-treated cells, these pits contain CCR5. Receptors internalized via clathrin-coated vesicles follow the clathrin-mediated endocytic pathway, and depletion of clathrin with small interfering RNAs inhibits CCL5-induced CCR5 internalization. We found no evidence for CCR5 association with caveolae during agonist-induced internalization. However, sequestration of cholesterol with filipin interferes with agonist binding to CCR5, suggesting that cholesterol and/or lipid raft domains play some role in the events required for CCR5 activation before internalization.  相似文献   

10.
The functional role of neutrophils during acute inflammatory responses is regulated by two high affinity interleukin-8 receptors (CXCR1 and CXCR2) that are rapidly desensitized and internalized upon binding their cognate chemokine ligands. The efficient re-expression of CXCR1 on the surface of neutrophils following agonist-induced internalization suggests that CXCR1 surface receptor turnover may involve regulatory pathways and intracellular factors similar to those regulating beta2-adrenergic receptor internalization and re-expression. To examine the internalization pathway utilized by ligand-activated CXCR1, a CXCR1-GFP construct was transiently expressed in two different cell lines, HEK 293 and RBL-2H3 cells. While interleukin-8 stimulation promoted CXCR1 sequestration in RBL-2H3 cells, receptor internalization in HEK 293 cells required co-expression of G protein-coupled receptor kinase 2 and beta-arrestin proteins. The importance of beta-arrestins in CXCR1 internalization was confirmed by the ability of a dominant negative beta-arrestin 1-V53D mutant to block internalization of CXCR1 in RBL-2H3 cells. A role for dynamin was also demonstrated by the lack of CXCR1 internalization in dynamin I-K44A dominant negative mutant-transfected RBL-2H3 cells. Agonist-promoted co-localization of transferrin and CXCR1-GFP in endosomes of RBL-2H3 cells confirmed that receptor internalization occurs via clathrin-coated vesicles. Our data provides a direct link between agonist-induced internalization of CXCR1 and a requirement for G protein-coupled receptor kinase 2, beta-arrestins, and dynamin during this process.  相似文献   

11.
Three distinct subtypes of alpha(1)-adrenergic receptors (alpha(1)A-, alpha(1)B-, and alpha(1)D-AR) play a prominent role in cell growth. However, little is known about subtype-specific effects on cell proliferation. The activation of alpha(1)A- or alpha(1)B-AR inhibits serum-promoted cell proliferation, whereas alpha(1)D-AR activation does not show such an inhibitory effect. Notably, cell-cycle progression was blocked at G(1)/S transition after activation of alpha(1)A/alpha(1)B-AR but not of alpha(1)D-AR. In agreement with the differential cell proliferation effect, cAMP production was increased after activation of alpha(1)A/alpha(1)B-AR but not alpha(1)D-AR, whereas all alpha(1)-AR subtypes are associated with inositol 1,4,5-trisphosphate production and mitogen-activated protein kinase activation in a similar fashion. Furthermore, the serum-induced reduction in the levels of the cyclin-dependent kinase inhibitor, p27(Kip1), was blocked after activation of alpha(1)A/alpha(1)B-AR but not alpha(1)D-AR. These results show that alpha(1)-AR subtypes differentially activate the cAMP/p27(Kip1) pathway and thereby have differential inhibitory effects on cell proliferation. Subtype-dependent effects should be taken into consideration when assessing the physiological response of native cells where alpha(1)-AR subtypes are generally co-expressed.  相似文献   

12.
The endocytic pathway of the secretin receptor, a class II GPCR, is unknown. Some class I G protein-coupled receptors (GPCRs), such as the beta(2)-adrenergic receptor (beta(2)-AR), internalize in clathrin-coated vesicles and this process is mediated by G protein-coupled receptor kinases (GRKs), beta-arrestin, and dynamin. However, other class I GPCRs, for example, the angiotensin II type 1A receptor (AT(1A)R), exhibit different internalization properties than the beta(2)-AR. The secretin receptor, a class II GPCR, is a GRK substrate, suggesting that like the beta(2)-AR, it may internalize via a beta-arrestin and dynamin directed process. In this paper we characterize the internalization of a wild-type and carboxyl-terminal (COOH-terminal) truncated secretin receptor using flow cytometry and fluorescence imaging, and compare the properties of secretin receptor internalization to that of the beta(2)-AR. In HEK 293 cells, sequestration of both the wild-type and COOH-terminal truncated secretin receptors was unaffected by GRK phosphorylation, whereas inhibition of cAMP-dependent protein kinase mediated phosphorylation markedly decreased sequestration. Addition of secretin to cells resulted in a rapid translocation of beta-arrestin to plasma membrane localized receptors; however, secretin receptor internalization was not reduced by expression of dominant negative beta-arrestin. Thus, like the AT(1A)R, secretin receptor internalization is not inhibited by reagents that interfere with clathrin-coated vesicle-mediated internalization and in accordance with these results, we show that secretin and AT(1A) receptors colocalize in endocytic vesicles. This study demonstrates that the ability of secretin receptor to undergo GRK phosphorylation and beta-arrestin binding is not sufficient to facilitate or mediate its internalization. These results suggest that other receptors may undergo endocytosis by mechanisms used by the secretin and AT(1A) receptors and that kinases other than GRKs may play a greater role in GPCR endocytosis than previously appreciated.  相似文献   

13.
Chen LE  Gao C  Chen J  Xu XJ  Zhou DH  Chi ZQ 《Life sciences》2003,73(1):115-128
Internalization and recycling of G protein-coupled receptors (GPCRs), such as the mu-opioid receptor, largely depend on agonist stimulation. Agonist-promoted internalization of some GPCRs has been shown to mediate receptor desensitization, resensitization, and down-regulation. In this study, we investigated whether different mu opioid agonists displayed different effects in receptor internalization and recycling, the potential mechanisms involved in ohmefentanyl-induced internalization process. In transfected Sf9 insect cells expressing 6His-tagged wild type mu opioid receptor, exposure to 100 nM ohmefentanyl caused a maximum internalization of the receptor at 30 min and receptors seemed to reappear at the cell membrane after 60 min as determined by radioligand binding assay. Ohmefentanyl-induced human mu opioid receptor internalization was concentration-dependent, with about 40% of the receptors internalized following a 30-min exposure to 1 microM ohmefentanyl. 10 microM morphine and 1 microM DAMGO could also induce about 40% internalization. The antagonist naloxone and pretreatment with pertussis toxin both blocked ohmefentanyl-induced internalization without affecting internalization themselves. Incubation with sucrose 0.45 M significantly inhibited ohmefentanyl-induced internalization of the mu receptor. The removal of agonists ohmefentanyl and morphine resulted in the receptors gradually returning to the cell surface over a 60 min period, while the removal of agonist DAMGO only partly resulted in the receptor recycling. The results of this study suggest that ohmefentanyl-induced internalization of human mu opioid receptor in Sf9 insect cells occurs via Gi/o protein-dependent process that likely involves clathrin-coated pits. In addition, the recycling process displays the differential modes of action of different agonists.  相似文献   

14.
Prostacyclin (PGI(2)), the major product of cyclooxygenase in macrovascular endothelium, mediates its biological effects through its cell surface G protein-coupled receptor, the IP. PKC-mediated phosphorylation of human (h) IP is a critical determinant of agonist-induced desensitization (Smyth, E. M., Hong Li, W., and FitzGerald, G. A. (1998) J. Biol. Chem. 273, 23258-23266). The regulatory events that follow desensitization are unclear. We have examined agonist-induced sequestration of hIP. Human IP, tagged at the N terminus with hemagglutinin (HA) and fused at the C terminus to the green fluorescent protein (GFP), was coupled to increased cAMP (EC(50) = 0.39 +/- 0.09 nm) and inositol phosphate (EC(50) = 86. 6 +/- 18.3 nm) generation when overexpressed in HEK 293 cells. Iloprost-induced sequestration of HAhIP-GFP, followed in real time by confocal microscopy, was partially colocalized to clathrin-coated vesicles. Iloprost induced a time- and concentration-dependent loss of cell surface HA, indicating receptor internalization, which was prevented by inhibitors of clathrin-mediated trafficking and partially reduced by cotransfection of cells with a dynamin dominant negative mutant. Sequestration (EC(50) = 27.6 +/- 5.7 nm) was evident at those concentrations of iloprost that induce PKC-dependent desensitization. Neither the PKC inhibitor GF109203X nor mutation of Ser-328, the site for PKC phosphorylation, altered receptor sequestration indicating that, unlike desensitization, internalization is PKC-independent. Deletion of the C terminus prevented iloprost-induced internalization, demonstrating the critical nature of this region for sequestration. Internalization was unaltered by cotransfection of cells with G protein-coupled receptor kinases (GRK)-2, -3, -5, -6, arrestin-2, or an arrestin-2 dominant negative mutant, indicating that GRKs and arrestins do not play a role in hIP trafficking. The hIP is sequestered in response to agonist activation via a PKC-independent pathway that is distinct from desensitization. Trafficking is dependent on determinants located in the C terminus, is GRK/arrestin-independent, and proceeds in part via a dynamin-dependent clathrin-coated vesicular endocytotic pathway although other dynamin-independent pathways may also be involved.  相似文献   

15.
Type-specific sorting of G protein-coupled receptors after endocytosis   总被引:7,自引:0,他引:7  
The beta(2)-adrenergic receptor (B2AR) and delta-opioid receptor (DOR) are structurally distinct G protein-coupled receptors (GPCRs) that undergo rapid, agonist-induced internalization by clathrin-coated pits. We have observed that these receptors differ substantially in their membrane trafficking after endocytosis. B2AR expressed in stably transfected HEK293 cells exhibits negligible (<10%) down-regulation after continuous incubation of cells with agonist for 3 h, as assessed both by radioligand binding (to detect functional receptors) and immunoblotting (to detect total receptor protein). In contrast, DOR exhibits substantial (>/=50%) agonist-induced down-regulation when examined by similar means. Degradation of internalized DOR is sensitive to inhibitors of lysosomal proteolysis. Flow cytometric and surface biotinylation assays indicate that differential sorting of B2AR and DOR between distinct recycling and non-recycling pathways (respectively) can be detected within approximately 10 min after endocytosis, significantly before the onset of detectable proteolytic degradation of receptors ( approximately 60 min after endocytosis). Studies using pulsatile application of agonist suggest that after this sorting event occurs, later steps of membrane transport leading to lysosomal degradation of receptors do not require the continued presence of agonist in the culture medium. These observations establish that distinct GPCRs differ significantly in endocytic membrane trafficking after internalization by the same membrane mechanism, and they suggest a mechanism by which brief application of agonist can induce substantial down-regulation of receptors.  相似文献   

16.
The widely expressed beta-arrestin isoforms 1 and 2 bind phosphorylated G protein-coupled receptors (GPCRs) and mediate desensitization and internalization. Phosphorylation of protease-activated receptor-1 (PAR1), a GPCR for thrombin, is important for desensitization and internalization, however, the role of beta-arrestins in signaling and trafficking of PAR1 remains unknown. To assess beta-arrestin function we examined signaling and trafficking of PAR1 in mouse embryonic fibroblasts (MEFs) derived from beta-arrestin (betaarr) knockouts. Desensitization of PAR1 signaling was markedly impaired in MEFs lacking both betaarr1 and betaarr2 isoforms compared with wild-type cells. Strikingly, in cells lacking only betaarr1 PAR1 desensitization was also significantly impaired compared with betaarr2-lacking or wild-type cells. In wild-type MEFs, activated PAR1 was internalized through a dynamin- and clathrin-dependent pathway and degraded. Surprisingly, in cells lacking both betaarr1 and betaarr2 activated PAR1 was similarly internalized through a dynamin- and clathrin-dependent pathway and degraded, whereas the beta(2)-adrenergic receptor (beta(2)-AR) failed to internalize. A PAR1 cytoplasmic tail mutant defective in agonist-induced phosphorylation failed to internalize in both wild-type and beta-arrestin knockout cells. Thus, PAR1 appears to utilize a distinct phosphorylation-dependent but beta-arrestin-independent pathway for internalization through clathrin-coated pits. Together, these findings strongly suggest that the individual beta-arrestin isoforms can differentially regulate GPCR desensitization and further reveal a novel mechanism by which GPCRs can internalize through a dynamin- and clathrin-dependent pathway that is independent of arrestins.  相似文献   

17.
The sst2A receptor is expressed in the endocrine, gastrointestinal, and neuronal systems as well as in many hormone-sensitive tumors. This receptor is rapidly internalized and phosphorylated in growth hormone-R2 pituitary cells following somatostatin binding (Hipkin, R. W., Friedman, J., Clark, R. B., Eppler, C. M., and Schonbrunn, A. (1997) J. Biol. Chem. 272, 13869-13876). The protein kinase C (PKC) activator, phorbol 12-myristate 13-acetate (PMA), also stimulates sst2A phosphorylation. Here we examine the mechanisms and consequences of PMA and agonist-induced sst2A phosphorylation. Like somatostatin, both PMA and bombesin increased sst2A receptor phosphorylation within 2 min. The PKC inhibitor GF109203X blocked PMA- and bombesin- stimulated sst2A phosphorylation, whereas stimulation by the somatostatin analog SMS 201-995 was unaffected. Agonist and PMA each stimulated phosphorylation in two receptor domains, the third intracellular loop and the C-terminal tail. Functionally, PMA dramatically increased the internalization of the sst2A receptor-ligand complex. This PMA stimulation was blocked by GF109203X, whereas basal internalization was unaffected. However, neither basal nor PMA-stimulated internalization was altered by pertussis toxin, whereas both were blocked by hypertonic sucrose. Therefore PKC activation and agonist binding stimulate sst2A phosphorylation by distinct mechanisms, and PKC potentiates internalization of the sst2A receptor via clathrin-coated pits. Thus, hormonal stimulation of PKC-coupled receptors may provide a mechanism for regulating the inhibitory actions of somatostatin in target tissue.  相似文献   

18.
Endocytosis and intracellular trafficking of the human parathyroid hormone receptor subtype 1 (hPTH1-Rc) and its ligands was monitored independently by real-time fluorescence microscopy in stably transfected HEK-293 cells. Complexes of fluorescence-labeled parathyroid hormone (PTH)-(1-34) agonist bound to the hPTH1-Rc internalized rapidly at 37 degrees C via clathrin-coated vesicles, whereas fluorescent PTH-(7-34) antagonist-hPTH1Rc complexes did not. A functional C terminus epitope-tagged receptor (C-Tag-hPTH1-Rc) was immunolocalized to the cell membrane and, to a lesser extent, the cytoplasm. PTH and PTH-related protein agonists stimulated C-Tag-hPTH1-Rc internalization. Relocalization to the cell membrane occurred 1 h after removal of the ligand. Endocytosis of fluorescent PTH agonist-hPTH1-Rc complexes was blocked by the protein kinase C (PKC) inhibitor staurosporine but not by the specific protein kinase A inhibitor N-(2-(methylamino)ethyl)-5-isoquinoline-sulfonamide. Fluorescent PTH antagonist-hPTH1-Rc complexes were rapidly internalized after PKC activation by phorbol 12-myristate 13-acetate or thrombin, but not after stimulation of the cAMP/protein kinase A pathway by forskolin. In cells co-expressing the hPTH1-Rc and a green fluorescent protein-beta-arrestin2 fusion protein (beta-Arr2-GFP), PTH agonists stimulated beta-Arr2-GFP mobilization to the cell membrane. Subsequently, fluorescent PTH-(1-34)-hPTH1Rc complexes and beta-Arr2-GFP co-localized intracellularly. In conclusion, agonist-activated hPTH1-Rc internalization involves beta-arrestin mobilization and targeting to clathrin-coated vesicles. Our results also indicate that receptor occupancy, rather than receptor-mediated signaling, is necessary, although not sufficient, for endocytosis of the hPTH1-Rc. Activation of PKC, however, is absolutely required.  相似文献   

19.
Abstract: Internalization and recycling of G protein-coupled receptors (GPCRs), such as the μ-opioid receptor, largely depend on agonist stimulation, whereas certain other receptor types recycle constitutively, e.g., the transferrin receptor. To investigate structural domains involved in μ-opioid receptor internalization, we constructed two truncation mutants bracketing a Ser/Thr-rich domain (354ThrSerSerThrIleGluGlnGlnAsn362) unique to the C-terminus of the μ-opioid receptor (mutants Trunc354 and Trunc363). Ligand binding did not differ substantially, and G protein coupling was slightly lower for these μ-receptor constructs, in particular for Trunc363. To permit localization of the receptor by immunocytochemistry, an epitope tag was added to the N-terminus of the wildtype and mutant receptors. Both the wild-type μ-opioid receptor and Trunc363 resided largely at the plasma membrane and internalized into vesicles upon stimulation with the agonist [d -Ala2,N-Me-Phe4,Gly-ol5]-enkephalin. Internalization occurred into vesicles that contain transferrin receptors, as shown previously, as well as clathrin, but not caveolin. In contrast, even without any agonist present, Trunc354 colocalized in intracellular vesicles with clathrin and transferrin receptors, but not caveolin. On blocking internalization by hyperosmolar sucrose or acid treatment, Trunc354 translocated to the plasma membrane, indicating that the mutant internalized into clathrin-coated vesicles and recycled constitutively. Despite agonist-independent internalization of Trunc354, basal G protein coupling was not elevated, suggesting distinct mechanisms for coupling and internalization. Furthermore, a portion of the C-terminus, particularly the Ser/Thr domain, appears to suppress μ-receptor internalization, which can be overcome by agonist stimulation. These results demonstrate that a mutant GPCR can be constructed such that internalization, normally an agonist-dependent process, can occur spontaneously without concomitant G protein activation.  相似文献   

20.
We investigated the mechanism of endothelin receptor type A (ETA) internalization in Chinese hamster ovary cells using two assays; flow cytometric quantification of cell surface myc-ETA and in situ localization of Cy5-labeled ET-1. In both assays, agonist-dependent internalization of myc-ETA was inhibited by nystatin and filipin, both of which disrupt internalization via caveolae, whereas it was barely affected by chlorpromazine and hypertonic sucrose, both of which disrupt internalization via clathrin-coated pits. In addition to myc-ETA, ET-1 caused intracellular translocation of caveolin-1 and this translocation was also blocked by nystatin but not by chlorpromazine. These results strongly argue that ETA is internalized via caveolae but not clathrin-coated pits. Treatment of the cells with cholesterol oxidase reduced cellular cholesterol and caused intracellular translocation of caveolin-1 but did not affect cell surface localization of myc-ETA. In cholesterol oxidase-treated cells, however, both chlorpromazine and hypertonic sucrose effectively blocked ET-1-induced myc-ETA internalization and nystatin was less effective than in untreated cells. Accordingly, expression of a dominant negative form of beta-arrestin blocked myc-ETA internalization in cholesterol oxidase-treated cells but not in untreated cells. These results suggest that, in Chinese hamster ovary cells, 1) agonist-occupied ETA can be internalized either via caveolae or clathrin-coated pits; 2) of the two, the former is the default pathway; and 3) the oxidative state of cell surface cholesterol is one of the factors involved in the pathway selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号